
The Computational Hardness and
Tractability of Restricted Seriation

Problems on Inaccurate Data
René van Bevern

Diplomarbeit
Zur Erlangung des akademischen Grades

Diplom-Informatiker

Friedrich-Schiller-Universität Jena
Fakultät für Mathematik und Informatik

Theoretische Informatik I / Komplexitätstheorie

Eingereicht von René van Bevern
geb. am 16.11.1985 in Saalfeld

Betreuer: Dipl.-Bioinf. Christian Komusiewicz,
Dr. Hannes Moser, Prof. Dr. Rolf Niedermeier

Jena, April 2010

Revised version. Chapter 5 partly appeared at 36th International Workshop on
Graph Theoretic Concepts in Computer Science (WG’10), Zarós, Crete, Greece, June
2010 [BKMN10].

2

Zusammenfassung. Seriation ist die Suche nach einer linearen Anordnung von
Objekten, deren paarweise Ähnlichkeiten gegeben sind, sodass sich einander ähnliche
Objekte in der Anordnung näher stehen als einander unähnliche. Seriation hat ihren
Ursprung in der relativen Datierung archäologischer Artefakte und kommt darüber
hinaus in den Sozialwissenschaften, in der Psychologie, zum Zwecke technischer
Diagnosen und in der Ökologie zum Einsatz.

Existiert eine Anordnung von Objekten, sodass zwei beliebige Objekte sich nicht
ähnlicher sind als alle dazwischen angeordneten Objektpaare, so heißt das gegebene
Ähnlichkeitsmaß robinsonsch – nach W. S. Robinson, der mittels Seriation archäo-
logische Artefakte datierte. Die zugehörige Ordnung heißt kompatibel mit dem
gegebenen Ähnlichkeitsmaß. Falls ein Ähnlichkeitsmaß eine kompatible Anordnung
seiner Objekte erlaubt – also robinsonsch ist – so ist diese in polynomieller Rechenzeit
konstruierbar. Auf Grund von beispielsweise Messfehlern existiert jedoch nicht für
jedes Ähnlichkeitsmaß eine kompatible Anordnung. Auf diesen nicht-robinsonschen
Ähnlichkeitsmaßen liegt das Hauptaugenmerk dieser Arbeit. Wir untersuchen zwei
Ansätze, um das Seriationsproblem für solche Ähnlichkeitsmaße zu lösen.

Der erste Ansatz besteht in der Suche nach Ausreißern in der gegebenen Objekt-
menge, ohne die die verbleibenden Objekte eine kompatible Anordnung erlauben.
Wir zeigen, dass dieses Problem – genannt Partial Robinsonian Similarity – NP-
vollständig ist und dass für das Problem parametrisierte Algorithmen existieren
(wobei die Anzahl der zu entfernenden Ausreißer als Parameter dient) wenn die
Ähnlichkeiten je zweier Objekte nur Binärwerte annehmen. Dazu entwickeln wir
einen parametrisierten Algorithmus für das eng verwandte Problem Unit Interval
Vertex Deletion, der insbesondere in den Sozialwissenschaften anwendbar ist.

Der zweite Ansatz ist die Suche nach einem robinsonschen Ähnlichkeitsmaß, das
Werte aus einer Menge M annimmt und einem gegebenen Ähnlichkeitsmaß am
nächsten ist. Indem man für dieses eine kompatible Anordnung bestimmt, kann
man das Seriationsproblem für die ursprünglichen Eingabedaten lösen. Hierbei
wird Nähe durch Lp-Normen modelliert und wir nennen das Problem Robinson
(Lp, M)-Fitting. Wir zeigen die NP-Vollständigkeit des Problems im Falle M = N und
M = {0,1}. Wir zeigen eine Formulierung des Problems als gemischt-ganzzahliges
lineares Optimierungsproblem.

Eine Variante des zweiten Ansatzes ist die Suche eines (Werte einer Menge M
annehmenden) Ähnlichkeitsmaßes, welches einem gegebenen Maß am nächsten
und kompatibel zu einer gegebenen Ordnung ist. Algorithmen für dieses Restric-
ted Robinson (Lp, M)-Fitting getaufte Problem lassen sich für Seriationsprobleme
anwenden, bei denen Teile der gesuchten Ordnung bereits bekannt sind. Mittels kon-
vexer Optimierung zeigen wir, dass Robinson (Lp,R)-Fitting innerhalb beliebiger
Genauigkeit in Polynomzeit lösbar ist. Für Restricted Robinson (L∞, M)-Fitting mit
M ∈ {R,N} und für Robinson (L1, {0, 1})-Fitting zeigen wir Linearzeitalgorithmen.

3

Abstract. Seriation is the task of finding a linear order of objects, whose pairwise
similarities are given, such that similar objects are placed more closely in the order
than dissimilar ones. The seriation problem originates from the task of relatively
dating archaeological artifacts. Moreover, it is applied in the social sciences, in
psychology, and technical diagnosis. Seriation is a special case of ordination as
applied in the ecological sciences.

If there is an order of the objects such that two objects are not more similar
to each other than any object pair ordered in between them, then the similarity
associated with the objects is called Robinsonian—named after W. S. Robinson, who
applied seriation to date archaeological artifacts. The corresponding order is called
compatible with the given similarity. If a similarity is Robinsonian, that is, if it allows
for a compatible order, then the order is computable in polynomial time. However,
not all similarities allow for a compatible order. This, for example, can be due
to inaccuracies in the input data. This work focuses on similarities that are not
Robinsonian. We study two approaches to solve the seriation task in this case.

The first approach tries to identify a small subset of outliers of the given object
set, so that the remaining objects allow for a compatible order. We call the problem
Partial Robinsonian Similarity and show that it is NP-complete. By developing
a fixed-parameter algorithm for the closely related Unit Interval Vertex Dele-
tion problem, it is shown that Partial Robinsonian Similarity is fixed-parameter
tractable (parameterized by the number of outliers) in case that the similarities
between objects obtain only binary values. This case has applications in measuring
indifference in the social sciences.

The second approach is searching for a Robinsonian similarity (obtaining values
from a set M) that comes closest to a given similarity. For the resulting similarity, a
compatible order can be constructed to solve the seriation problem for the original
input data. Here, we measure closeness using Lp-norms and call the problem Ro-
binson (Lp, M)-Fitting. We show that the problem is NP-complete for M = N
and M = {0, 1}. We present a mixed integer program formulation of the problem.

As a variant of the second approach, we study the Restricted Robinson (Lp, M)-
Fitting problem, which searches for a similarity (obtaining values from M) that
comes closest to the given input similarity and that is compatible with a given order.
Algorithms solving this problem are applicable to seriation problems where parts of
the sought order are already known. Exploiting convex programming, we obtain that
Restricted Robinson (Lp,R)-Fitting is polynomial-time solvable within arbitrary
precision. Moreover, we present linear-time algorithms for Restricted Robinson
(L∞, M)-Fitting for M ∈ {N,R}, and for Restricted Robinson (L1, {0,1})-Fitting.

5

Contents

1 Introduction 7
1.1 Seriation on Inaccurate Data . 9
1.2 Seriation and Unit Interval Graphs . 10
1.3 Relation to Consecutive Ones Submatrix 12

2 Prerequisites 14

3 Related Work and New Results 18

4 Seriation 21
4.1 Partial Robinsonian Similarities . 22
4.2 Robinson Fitting . 24

4.2.1 NP-Completeness . 24
4.2.2 A Mixed Integer Program . 27

4.3 Restricted Robinson Fitting . 29
4.3.1 Polynomial-Time Lp-Fitting by Real-Valued Similarities 30
4.3.2 Linear-Time L∞-Fitting . 33
4.3.3 Linear-Time L1-Fitting by {0,1}-Similarities 37

4.4 Conclusion . 39

5 Unit Interval Vertex Deletion 42
5.1 Fixed-Parameter Tractability, Stronger NP-Hardness Results 43
5.2 Outline of a New Fixed-Parameter Algorithm 45

5.2.1 Iterative Compression . 46
5.2.2 Disjoint Unit Interval Vertex Deletion 48

5.3 Algorithmic Details . 50
5.3.1 Bounding the Number of Vertices in Junctions 51
5.3.2 Finding Optimal Solutions in Tubes 55
5.3.3 Bounded Search Tree . 61

5.4 Conclusion . 62

6 Conclusion 64

6

1 Introduction

Seriation is a data analysis problem that, given a set of objects and a similarity
associated with each pair of objects, searches for an order of the given objects
such that similar objects appear close in the order, while less similar objects get
assigned distant positions in the order. The result could, for example, resemble a
chronological order underlying the given objects.

Archaeological origin. The roots of the seriation problem lie in archaeology, where
seriation is applied to chronologically order archaeological artifacts [Rob51]. As
an introductory example, consider ancient graves found at a dig site. The task is
to find the chronological order underlying the graves. Here, the similarity between
two graves can be measured by the number of common objects found in them.
Using seriation, the graves can be linearly ordered so that graves containing many
common objects appear close in the order. As the frequency of specific materials’
usage changes over time, it is likely that the age of graves containing many, for
example, bronze artifacts is similar. As a consequence, the order found through
seriation is likely to resemble the chronological order of the found graves. According
to Kendall [Ken69], the archaeological roots of the seriation problem even date back
to the archaeologist Flinders Petrie [Pet99], who already applied seriation in the
year 1899.

Measuring indifference. Another application of seriation arises in the social sci-
ences [Luc56, Rob78]. Here, for example, a person may express his or her preference
of an object x over an object y . If neither object is preferred, the person is indifferent
between x and y. The task is to assign a merit value f (x) to each object x that
expresses the person’s preferences. That is, f (x) < f (y) shall hold if and only if
the person prefers x over y . However, modeling indifference between two objects x
and y by choosing equal merit values f (x) = f (y) yields a very restrictive model: if
the person is indifferent between x and y and between y and z, we set f (x) = f (y)
and f (y) = f (z) and therefore imply that the person is also indifferent between x
and z. This makes the model arguable: a person might prefer x over z even if the
difference between x and y and between y and z is not noticeable.

An approach to circumvent this problem has been described by Luce [Luc56]:

7

1 Introduction

d x1 x2 x3 x4

x1 3 2 1 0
x2 2 3 2 1
x3 1 2 3 2
x4 0 1 2 3

Figure 1.1: A Robinsonian similarity with rows and columns arranged according to
a compatible order. The entry in the i-th row and k-th column displays d(x i, xk).

instead of letting indifference correspond to equal merit values, he measures in-
difference by close merit values. Now, the task is, given a set of objects and a just
noticeable difference δ ≥ 0, to associate with each object x a merit value f (x) such
that | f (x)− f (y)| ≤ δ holds if and only if a person expresses indifference between x
and y . The function f can be thought of as an indifference measure. Observe how
similar this task is to the seriation task: in the order x � y induced by f (x)≤ f (y),
two objects x and y appear close to each other if and only if the person is indifferent
between x and y . Otherwise, they get assigned distant positions. The difference to
the general seriation problem lies in the measure of similarity between two objects:
while in general, the similarity between two objects may obtain any value, the
indifference between two objects either holds or not.

Besides archaeology and the social sciences, seriation has been used in psychol-
ogy [Hub74] and technical diagnosis [Nök91]. In ecology, seriation is applied under
the name ordination [Gau82]. The practical importance of seriation raised various
packages providing heuristics and exact algorithms for seriation [HHB08] for the
R programming language1, which is frequently used for statistical programming and
data mining.

Modeling Seriation. One way to model seriation is based on the seriation method
that Robinson [Rob51] employed to date archaeological artifacts: let X be a set
of objects and let d : X × X → R be the similarity between two objects, where
d(x , x)≥ d(x , y) = d(y, x)≥ 0 holds for every x , y ∈ X . In this setting, the seriation
task is finding a linear order � on X such that x � y � z implies d(x , z) ≤ d(x , y)
and d(x , z)≤ d(y, z). If such an order� exists, we call d Robinsonian and say that�
is compatible with d. It is possible to construct a compatible order for a similarity in
O(|X |3) time [CF97], if one exists. To give an intuition of Robinsonian similarities,
consider a similarity d : X × X → R that allows for a compatible order x1 � x2 �
. . .� xn on X . Then, the matrix A := (ai j) with ai j = d(x i, x j) is a symmetric matrix

1http://www.r-project.org/

8

http://www.r-project.org/

1.1 Seriation on Inaccurate Data

whose entries never increase when moving away from the main diagonal; this is
because i ≤ j ≤ k implies aik ≤ min{ai j, a jk}. Figure 1.1 shows a Robinsonian
similarity in this form.

Section 1.1 describes ways to transform general similarities into Robinsonian sim-
ilarities. These constitute the focus of this work. Section 1.2 presents relations
between the considered similarity modification problems and known graph modi-
fication problems—relations that we will frequently exploit. Section 1.3 shows an
application to the Consecutive Ones Submatrix problem.

1.1 Seriation on Inaccurate Data

As Roberts [Rob79] points out, real-world data rarely fits a model perfectly, that
is, we might measure similarities between objects such that the resulting similarity
does not allow for a compatible order. We investigate two ways to transform
general similarities into Robinsonian similarities by a minimum of modifications,
so that the seriation problem is efficiently solvable on the resulting Robinsonian
similarities [MR84, CF97, ABH99]. This is the main objective of Chapter 4.

Suppose we are given a similarity d : X × X → R that is not allowing for a
compatible order. Under the assumption that some plausible order should underlie
the objects in X , the nonexistence of a compatible order for d is likely due to
inaccuracies in the input data. On the one hand, the inaccuracies in the input data
might be outliers in the object set X . On the other hand, they might come from
inexact measurement of the similarities between objects [Rob79].

If we find a small set of outliers, we can exclude them from the seriation task
in order to solve it, or we might reconsider their similarities to other objects and
correct the similarity data. Thus, one approach to make similarities Robinsonian is
trying to find a small subset S of outliers in X such that d allows for a compatible
order if we remove the outliers in S from X :

Partial Robinsonian Similarity
Input: A similarity d : X × X → R and a natural number k.
Question: Is d|X\S Robinsonian for some subset S ⊆ X with |S| ≤ k?

Here, d|X\S : X\S×X\S→ R is the similarity with d|X\S(x , y) = d(x , y) for all x , y ∈
X\S. If we require the input to be a {0, 1}-similarity d : X × X → {0, 1}, then we call
the problem Partial Robinsonian {0,1}-Similarity.

Another approach to transform a similarity d : X × X → R into a Robinsonian
similarity is to search for a Robinsonian similarity that comes “closest” to d by
minimally changing the similarity between objects. Here, the distance between two

9

1 Introduction

d x1 x2 x3 x4

x1 3 2 1 0
x2 2 3 2 1
x3 1 2 3 2
x4 0 1 2 3

d ′ x1 x2 x3 x4

x1 3 0 0 0
x2 0 3 2 1
x3 0 2 3 2
x4 0 1 2 3

Figure 1.2: The order x1 � x2 � x3 � x4 is compatible with the similarities d
and d ′; the values never increase when moving away from the main diagonals. Here,
‖d − d ′‖1 is the sum of the distances between d(x , y) and d ′(x , y) for objects above
the main diagonal; one has ‖d−d ′‖1 = 3. Similarly, ‖d−d ′‖2

2 = 5 and ‖d−d ′‖∞ = 2.

similarities d, d ′ : X×X → R is measured using the Lp-norm for p ≥ 1 (see Figure 1.2
for examples), which we define as

‖d − d ′‖p :=

�

1

2

∑

x 6=y
x ,y∈X

|d(x , y)− d ′(x , y)|p
�

1
p
.

The sum is multiplied with 1/2 because it counts |d(x , y) − d ′(x , y)|p twice for
each x , y ∈ X . This is due to the symmetry of d. As a special case, we define the
L∞-norm as ‖d − d ′‖∞ :=maxx ,y∈X |d(x , y)− d ′(x , y)|. We write ‖d − d ′‖p

p instead
of (‖d − d ′‖p)p. Observe that for two similarities d, d ′ : X × X → R, if we consider d
as fixed, then d ′ is a global minimum for the (always nonnegative) distance ‖d−d ′‖p

if and only if it is a global minimum for the (also nonnegative) distance ‖d − d ′‖p
p.

Thus, we can safely choose to minimize the easier computable ‖d − d ′‖p
p instead

of ‖d − d ′‖p. We arrive at the following decision problem:

Robinson (Lp, M)-Fitting
Input: A similarity d : X × X → M and a number ε > 0.
Question: Is there a Robinsonian similarity d ′ : X × X → M with ‖d − d ′‖p

p ≤ ε
for p <∞ and ‖d − d ′‖∞ ≤ ε for p =∞?

1.2 Seriation and Unit Interval Graphs

This section presents connections between graph modification problems and the
similarity modification problems described in Section 1.1. These connections are
mainly based on connections between graph theory and seriation that have been
established by Roberts [Rob69, Rob78]. We will frequently exploit them in proofs of
hardness and tractability.

10

1.2 Seriation and Unit Interval Graphs

1

2

3

4 5

6

7 4
3

2
1

5 7
6

Figure 1.3: A unit interval graph and its interval representation.

Reconsider the introductory example of measuring indifference: for an object
set X , a person may express indifference between objects in X . Let the set I contain
sets of the form {x , y} if a person is indifferent between two objects x and y in X .
A task described by Luce [Luc56] is to assign a merit value f (x) to each object x ∈ X
such that | f (x) − f (y)| ≤ δ if and only if {x , y} ∈ I . Here, δ denotes the just
noticeable difference between any two objects. If such an assignment of merit values
exists, then the graph (X , I) is called indifference graph. Roberts [Rob69, Rob78]
has shown that indifference graphs are equivalent to proper interval graphs and unit
interval graphs. A unit interval graph is a graph whose vertices can be mapped to
unit-length intervals on the real line such that an edge exists between two vertices if
and only if the corresponding intervals intersect. Figure 1.3 shows a unit interval
graph with its interval representation.

Roberts [Rob79] pointed out that the indifference expressed by a person might
not fit Luce’s model [Luc56]. In this case, (X , I) is not a unit interval graph. As
suggested in Section 1.1, one way to solve this problem is searching for a minimum
set S of outliers in X such that there is a merit function that, at least for the
objects x , y ∈ X\S, satisfies | f (x)− f (y)| ≤ δ if and only if {x , y} ∈ I . This is
equivalent to the following graph modification problem:

Unit Interval Vertex Deletion
Input: A graph G = (V, E) and a natural number k.
Question: Is G− S a unit interval graph for some vertex set S ⊆ V with |S| ≤ k?

Here, G− S denotes the graph G with the vertices in S removed. In Chapter 5, we
develop a fixed-parameter algorithm for Unit Interval Vertex Deletion parameter-
ized by k, showing one possible way to make empirical indifference data compatible
with Luce’s [Luc56] mathematical indifference model.

Roberts [Rob69, Rob78] has shown that unit interval graphs can also be used to
characterize Robinsonian similarities. To this end, the concept of compatible orders
is extended to graphs: a graph has a compatible order � of its vertices if, for all
vertices u, v, w with u� v � w, the existence of the edge {u, w} implies the existence
of the edges {u, v} and {v, w}. A similarity d : X × X → R is Robinsonian if and only
if there is an order � that is compatible with all graphs Gε, where Gε is a graph with

11

1 Introduction

the vertex set X such that {x , y} is an edge of Gε if and only if d(x , y)≥ ε [Rob78].
Observe that the graphs Gε used in this characterization have a loop at each vertex,
that is, for each vertex v, there is an edge between v and itself. According to this
characterization, a {0,1}-similarity d : X × X → {0,1} is Robinsonian if and only if
there is an order compatible with the corresponding graphs G0, G1, and G2. Observe
that G0 has all possible edges and G2 has no edges: all orders are compatible with G0

and G2. As a consequence, d is Robinsonian if and only if G1 allows for a compatible
order, which, as shown by Roberts [Rob69, Rob78], is equivalent to G1 (with the
loops at each vertex removed) being a unit interval graph. This shows:

Proposition 1.1. A similarity d : X × X → {0,1} is Robinsonian if and only if the
graph G = (X , E) is a unit interval graph, where E := {{x , y} | x , y ∈ X , x 6=
y, and d(x , y) = 1}.

From Proposition 1.1, it is easily seen that Unit Interval Vertex Deletion is
equivalent to Partial Robinsonian {0,1}-Similarity. Moreover, Section 4.2 will
show that Robinson (L1, {0, 1})-Fitting is equivalent to the following problem:

Unit Interval Editing
Input: A graph G = (V, E) and a natural number k.
Question: Is there a unit interval graph G′ = (V, E′) with |E∆E′| ≤ k?

Chapter 4 uses these relations to show that Partial Robinsonian Similarity and
Robinson (Lp,N)-Fitting are NP-complete and that Partial Robinsonian {0, 1}-Simi-
larity is fixed-parameter tractable parameterized by the number of sought outliers.

1.3 Relation to Consecutive Ones Submatrix

Chapter 5 presents a fixed-parameter algorithm for Unit Interval Vertex Deletion
parameterized by the allowed number of vertex deletions. This can be exploited to
show fixed-parameter tractability of a problem related to the Consecutive Ones
Submatrix problem, which is explained in the following.

A matrix has the consecutive ones property (for columns) if its rows can be
permuted such that in each column the ones appear consecutively. The consecutive
ones property has applications in scheduling, information retrieval, computational
biology, and railway optimization. Refer to Dom [Dom08, Dom09] for examples of
applications. The NP-complete [HG02] Consecutive Ones Submatrix problem is

Consecutive Ones Submatrix
Input: A binary matrix A and a natural number k
Question: Can A be transformed into a matrix having the consecutive ones prop-

erty by at most k row deletions?

12

1.3 Relation to Consecutive Ones Submatrix

While the Consecutive Ones Submatrix problem has been studied in terms of
parameterized complexity with respect to other parameters [Dom08, DGN10], it is
unknown whether Consecutive Ones Submatrix is fixed-parameter tractable with
respect to the parameter k. However, we can show that the following variant of
Consecutive Ones Submatrix is fixed-parameter tractable:

Symmetric Consecutive Ones Submatrix
Input: A binary symmetric matrix A with ones on the main diagonal.
Parameter: A natural number k.
Question: Can A be transformed into a matrix having the consecutive ones prop-

erty by k simultaneous row and column deletions?

Here, a simultaneous row and column deletion means that row i is deleted if and
only if column i is deleted. To see that Symmetric Consecutive Ones Submatrix
is fixed-parameter tractable, we exploit the fixed-parameter algorithm for Unit
Interval Vertex Deletion shown in Chapter 5 and the fact that a graph is a unit
interval graph if and only its augmented adjacency matrix has the consecutive
ones property [Rob69, Rob78]; the augmented adjacency matrix of a graph G =
({v1, v2, . . . , vn}, E) is a matrix A= (ai j)with ai j = 1 if {vi, v j} ∈ E or i = j, and ai j = 0
otherwise. Observe that deleting a vertex vi from G is equivalent to the simultaneous
deletion of the i-th row and i-th column from its augmented adjacency matrix.
Therefore, Symmetric Consecutive Ones Submatrix can be interpreted as taking as
input the augmented adjacency matrix of an arbitrary graph and asking whether it
can be transformed into the augmented adjacency matrix of a unit interval graph by
deleting at most k vertices. It follows that Symmetric Consecutive Ones Submatrix
is equivalent to Unit Interval Vertex Deletion. Chapter 5 presents a fixed-parame-
ter algorithm for Unit Interval Vertex Deletion parameterized by the number of
allowed vertex deletions. From this, it follows that Symmetric Consecutive Ones
Submatrix is fixed-parameter tractable.

13

2 Prerequisites

This chapter gives the prerequisites necessary to understand the subsequent chapters
of this work. The reader is expected to be familiar with the concept of NP-complete-
ness. A detailed introduction into the concept is given by Garey and Johnson [GJ79].

2.1 Orders

An order v on a set X is a subset of the Cartesian product X × X . For two ob-
jects x , y ∈ X , we write x v y if (x , y) is contained in v. A pair of objects x , y ∈ X
is incomparable with respect to v if neither x v y nor y v x holds. An order v on X
is reflexive if for every x ∈ X , it holds that x v x . It is transitive if for every x , y, z ∈ X ,
it holds that x v y and y v z implies x v z. It is antisymmetric if for every x , y ∈ X ,
x v y and y v x implies x = y .

A partial order is a reflexive, transitive, and antisymmetric order. A total order is a
partial order for which no incomparable pairs exist. By convention, we write v for
partial orders and � for total orders.

For a total order � on a set X , a segment of � is a set [x , z] := {y | x � y � z}
for two elements x , z ∈ X . If a total order � is a superset of a partial order v, then
� is a linear extension of v. For a subset S ⊆ X , an object x ∈ S is the minimum
object in S with respect to � if all objects y ∈ S satisfy x � y . An object z ∈ S is the
maximum object in S with respect to � if all objects y ∈ S satisfy y � z.

Examples. On N, the order ≤ is a total order. The segments of ≤ are the closed
intervals [a, b] for two numbers a, b ∈ N. The minimum object in [a, b] with respect
to ≤ is a, the maximum object is b. The order “a divides b” with a, b ∈ N is a partial
order. With respect to the latter, (3,5) is an incomparable pair because three does
not divide five and five does not divide three.

14

2.2 Seriation

2.2 Seriation

For a set X , a similarity is a function d : X × X → R satisfying d(x , x) ≥ d(x , y) =
d(y, x) ≥ 0 for every x , y ∈ X . A total order � on X is compatible with the
similarity d if x � y � z implies d(x , z)≤ d(x , y) and d(x , z)≤ d(y, z). If such an
order� exists, we call d Robinsonian. A dissimilarity is a function d ′ : X×X → Rwith
d ′(x , y) = d ′(y, x) ≥ d ′(x , x) = 0 for all x , y ∈ X . An order � on X is compatible
with the dissimilarity d ′ if x � y � z implies d ′(x , z)≥max{d ′(x , y), d ′(y, z)}. If a
dissimilarity d allows for a compatible order, we call it Anti-Robinsonian.

For a (dis)similarity d : X × X → R and a set S ⊆ X , we let d|S : S × S → R
denote the (dis)similarity with d|S(x , y) = d(x , y) for all x , y ∈ S. For two
(dis)similarities d, d ′ : X × X → R and a number λ ∈ R, d ± d ′ is the (dis)similarity
that maps (x , y) to d(x , y)±d ′(x , y) and λ±d ′ is the (dis)similarity that maps (x , y)
to λ±d ′(x , y). Note that d−d ′ and λ−d ′ do not necessarily satisfy (d−d ′)(x , y)≥ 0
or (λ− d ′)(x , y)≥ 0 for all x , y ∈ X , respectively.

For a (dis)similarity d : X × X → R not necessarily satisfying d(x , y) ≥ 0 for
all x , y ∈ X , we define the Lp-norms

‖d‖p :=

�

1

2

∑

x 6=y
x ,y∈X

|d(x , y)|p
�

1
p

and ‖d‖∞ := max
x 6=y

x ,y∈X

|d(x , y)|.

We only consider Lp norms for p ≥ 1. These satisfy the triangle inequality ‖d+d ′‖p ≤
‖d‖p + ‖d ′‖p. We write ‖d‖p

p instead of (‖d‖p)p.

2.3 Graph Theory

In this work, we only consider undirected simple graphs G = (V, E), where V is the
set of vertices and E is the set of edges. Throughout this work, we use n := |V |
and m := |E|. We call two vertices v, w ∈ V adjacent or neighbors if {v, w} ∈ E. The
(open) neighborhood N(v) of a vertex v ∈ V is the set of vertices that are adjacent
to v. A clique is a graph in which every two distinct vertices are adjacent. A set of
pairwise nonadjacent vertices is an independent set. The complement graph G of G
is the graph on the same vertex set as G having an edge {v, w} if and only if G does
not have the edge {v, w}. Two graphs H and G are isomorphic if there is a bijective
function f that maps vertices of H to vertices of G such that {v, w} is an edge of H if
and only if { f (v), f (w)} is an edge of G.

15

2 Prerequisites

Induced subgraphs. For a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is
the graph with the vertex set V ′ and the edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V ,
we use G− V ′ as an abbreviation for G[V\V ′]. A graph property Π is hereditary if
every induced subgraph of a graph satisfying Π also satisfies Π. For a graph F , a
graph G is F -free if it does not contain an induced subgraph that is isomorphic to F .
We also say that G contains no induced F .

Connectivity. A path P from v1 ∈ V to vl ∈ V is a sequence (v1, v2, . . . , vl) ∈ V l

with {vi, vi+1} ∈ E for i ∈ {1, . . . , l − 1}. The path P visits the vertices v1, . . . , vl . An
edge {vi, v j} for |i − j| > 1 is a chord. If i 6= j implies vi 6= v j, then P is simple. If,
additionally, P has no chords, then P is induced. An (induced or chordless) cycle is
an (induced) path with an added edge {v1, vl} ∈ E. We use Cl to denote induced
cycles of length l. A hole is an induced cycle of length greater than three. Two
vertices v, w ∈ V are connected in G if there is a path from v to w in G. A vertex-cut
between v and w in G is a set C ⊆ V such that v and w are not connected in G− C .
A connected component of G is a maximal induced subgraph of G in which every pair
of vertices is connected.

2.4 Parameterized Complexity

Parameterized complexity analysis aims at a multivariate complexity analysis of
problems without giving up the demand for finding optimal solutions [DF99, FG06,
Nie06]. For a finite alphabet Σ, a parameterized problem is a language L ⊆ Σ∗×N.
The second component is called the parameter of the problem. A parameter-
ized problem L is fixed-parameter tractable if it is decidable in f (k)|x |O(1) time
whether (x , k) ∈ L, where f is a computable function only depending on k. The
corresponding complexity class is FPT. An algorithm that decides (x , k) ∈ L in
f (k)|x |O(1) time is called fixed-parameter algorithm.

Parameter-Preserving Reductions. A parameter-preserving reduction from a pa-
rameterized problem L to a parameterized problem L′ is a polynomial-time com-
putable function f : L → L′, (x , k) 7→ (x ′, k) such that (x , k) ∈ L if and only if
(x ′, k) ∈ L′. Note that this definition is only a special case of general parameterized
reductions found in the literature of parameterized complexity [DF99, FG06, Nie06]
and of the polynomial-time many-one reductions from classical complexity the-
ory [GJ79].

16

2.4 Parameterized Complexity

Bounded Search Tree Algorithms. Bounded search tree algorithms are one way
to obtain fixed-parameter algorithms, which we explain by means of Vertex Cover:

Vertex Cover
Input: A graph G and a natural number k.
Question: Is there a set S with |S| ≤ k such that each edge of G has one of its

endpoints in S?

What follows is a simple bounded search tree algorithm that solves Vertex Cover
in O(2km) time, that is, the resulting algorithm is a fixed-parameter algorithm for
Vertex Cover parameterized by k. The bounded search tree algorithm for Vertex
Cover is a recursive algorithm that takes as input the graph G, the natural number k
and a set S (initially S = ;) and works as follows: if |S| ≤ k, then search for an
edge {u, v} in G such that neither u nor v are in S. If no such edge exists, then
(G, k) is a yes-instance and the algorithm can return S. Otherwise, as S shall contain
a vertex of every edge in G, at least one of u or v must be put into S. Thus, we
recursively apply the algorithm: (G, k) is a yes-instance if and only if one of the
recursive calls with (G, k, S ∪ {u}) and (G, k, S ∪ {v}) returns that (G, k) is a yes-in-
stance. We say that we recursively branch into the cases of putting u or v into S. If
|S| ≥ k, we stop making further recursive calls.

Each call of the algorithm makes two further recursive calls. Because |S| increases
with each nested recursive call and because a call does not make further recursive
calls if |S| ≥ k, the recursion depth is at most k. The corresponding recursive call
tree, called search tree, has O(2k) nodes, each corresponding to a call of the algorithm.
In each search tree node, an edge that has no endpoint in S is sought. This works
in O(m) time. Thus, each of the O(2k) nodes of the search tree can be processed
in O(m) time, which results in a total running time of O(2km) for the search tree
algorithm for Vertex Cover.

17

3 Related Work and New Results

Section 3.1 summarizes related work. New results are summarized in Section 3.2.
While this work focuses on Robinsonian similarities instead of Anti-Robinsonian
dissimilarities because of their more obvious connections to unit interval graphs
and the consecutive ones property, many results in literature concern Anti-Robin-
sonian dissimilarities. These are sometimes also called “Robinsonian”. Our results
one-to-one transfer to Anti-Robinsonian dissimilarities.

3.1 Related Work

Seriation. The seriation model used in this work has been established by Robin-
son [Rob51]. Anti-Robinsonian dissimilarities are recognizable in polynomial
time [MR84, CF97]. Observing that a similarity d : X × X → R is Robinsonian
if and only if d ′ := ‖d‖∞− d with d ′(x , x) for x ∈ X set to zero is an Anti-Robinso-
nian dissimilarity, these algorithms are applicable to the recognition of Robinsonian
similarities. Atkins et al. [ABH99] showed how to directly recognize Robinsonian
similarities employing a spectral analysis of the corresponding similarity matrix.

Chepoi et al. [CFS09] have shown that the Anti-Robinson (L∞,R)-Fitting prob-
lem, which for a given dissimilarity d : X × X → R asks whether there is an Anti-
Robinsonian dissimilarity d ′ : X × X → R with ‖d − d ′‖∞ ≤ ε, is NP-hard. This is
easily seen to imply the NP-hardness of Robinson (L∞,R)-Fitting by exploiting that
a dissimilarity d : X × X → R is Anti-Robinsonian if and only if ‖d‖∞− d is a Robin-
sonian similarity. Chepoi and Seston [CS09] have shown a factor-16 approximation
algorithm for Anti-Robinson (L∞,R)-Fitting. Barthélemy and Brucker [BB01] have
shown NP-completeness of a problem related to Anti-Robinson (Lp,N)-Fitting;
their problem description poses stricter requirements on the sought dissimilarity d ′.
As these stricter requirements are exploited in their NP-completeness proof, their
NP-completeness result does not generalize to (Anti-)Robinson (Lp,N)-Fitting.
Chepoi et al. [CFS09] have shown that, given a dissimilarity d : X × X → R and a
total order �, a dissimilarity d ′ : X ×X → R that is compatible with � and minimizes
‖d − d ′‖∞ is computable in polynomial time. A straightforward transformation of
their proof into an algorithm yields an algorithm that uses O(|X |4) real-number
additions and comparisons.

18

3.1 Related Work

(a) Claw (b) Net (c) Tent (d) Holes

Figure 3.1: The (infinitely many) forbidden induced subgraphs for unit interval
graphs. Holes are induced cycles of arbitrary length greater than three.

The consecutive ones property is recognizable in linear time [BL76, Hsu02].
The Consecutive Ones Submatrix problem is NP-complete [HG02] and has been
subject to parameterized complexity studies [Dom08, Dom09, DGN10].

Unit Interval Graphs. On unit interval graphs, many classical NP-hard prob-
lems [GJ79] are solvable in linear time. This includes the Independent Set and
Clique problems [GLL82], the Dominating Set problem [Cha98], as well as the
Hamilton Cycle and Hamilton Path problems [PD03]. Roberts has shown that
unit interval graphs, defined as graphs whose vertices can be mapped to unit-length
intervals on the real line such that two vertices are adjacent if and only if their
corresponding intervals intersect, are equivalent to proper interval graphs and indif-
ference graphs [Rob69, Rob78]. Wegner [Weg67] has shown that a graph is a unit
interval graph if and only if it contains none of the infinitely many graphs shown
in Figure 3.1 as induced subgraph [Rob78, BLS99]. Unit interval graphs can be
recognized in linear time [CKN+98, PD03, HH05].

Unit Interval Editing has been shown to be NP-complete by Burzyn et al. [BBD06]
even on cubic planar graphs. Unit Interval Vertex Deletion is also NP-complete:
the forbidden induced subgraph characterization of unit interval graphs implies that
being a unit interval graph is a hereditary graph property. Because not all graphs are
unit interval graphs (for examples, refer to Figure 3.1), and because unit interval
graphs are recognizable in linear time [CKN+98, PD03, HH05], this implies that
the Unit Interval Vertex Deletion problem is NP-complete by a general result
due to Lewis and Yannakakis [LY80]. Marx [Mar09] has shown a fixed-parameter
algorithm for the following related problem:

Chordal Vertex Deletion
Input: A graph G.
Parameter: A natural number k.
Question: Is there a vertex set S with |S| ≤ k such that G− S is hole-free?

19

3 Related Work and New Results

3.2 New Results

Chapter 4, Seriation. Exploiting graph-theoretic results, we show that Partial
Robinsonian Similarity is NP-complete even if the input is restricted to {0,1}-si-
milarities. In this case, we show that Partial Robinsonian {0,1}-Similarity is
solvable in O((14k+ 14)k+1 · k|X |6) time by exploiting a fixed-parameter algorithm
for the closely related Unit Interval Vertex Deletion problem that is developed
in Chapter 5. We show difficulties that arise when trying to generalize the used
algorithm to the general Partial Robinsonian Similarity problem.

Again exploiting graph-theoretic results, we show that Robinson (Lp,N)-Fitting
and Robinson (L1, {0, 1})-Fitting are NP-complete. We give a formulation of Robin-
son (L1,R)-Fitting as mixed integer program. The mixed integer program can easily
be modified to solve Robinson (Lp, M)-Fitting for all combinations of p ∈ {1,∞}
and M ∈ {N,R, {0,1}}. The mixed integer program formulation might be useful to
solve these problem variants using sophisticated mixed integer solver software.

Finally, we consider the problem of, given a similarity d : X × X → R and a
total order �, finding a similarity d ′ : X × X → R that is compatible with � and
minimizes ‖d − d ′‖p

p for 1 ≤ p <∞. Algorithms for this problem are applicable to
solve seriation problems where parts of the sought order are already known. We use
convex programming techniques to show that the problem is solvable in polynomial
time within arbitrary precision. For the special case that seeks to minimize ‖d − d ′‖1

under the constraint that d ′ is a {0, 1}-similarity, we present a dynamic programming
algorithm running in O(|X |2) time, which is linear in the input size. Finally, we
develop a simple combinatorial algorithm that minimizes ‖d−d ′‖∞ within precision ε̄
using O(|X |2 log‖d‖∞ε̄−1) real-number additions and comparisons.

Chapter 5, Unit Interval Vertex Deletion. We present an easy-to-implement fixed-
parameter algorithm that solves Unit Interval Vertex Deletion in O((14k+14)k+1 ·
kn6) time. The algorithm can be applied to solve Partial Robinsonian {0, 1}-Simi-
larity as shown in Chapter 4. Moreover, we show that the problem is NP-hard even
on {claw, net, tent}-free graphs. In this case, Unit Interval Vertex Deletion is
equivalent to Chordal Vertex Deletion.

20

4 Seriation

This chapter studies approaches to transform similarities into Robinsonian similari-
ties, on which the seriation problem is efficiently solvable. Herein, the focus is on
the approaches described in Chapter 1: making similarities Robinsonian by removal
of outliers or by minimally changing the similarities between objects. All of this
chapters’ results are summarized in a table on page 41. Section 4.1 first focuses on:

Partial Robinsonian Similarity
Input: A similarity d : X × X → R and a natural number k.
Question: Is d|X\S Robinsonian for some subset S ⊆ X with |S| ≤ k?

Section 4.1 shows that Partial Robinsonian Similarity is NP-hard even if the
input is restricted to {0,1}-similarities. We present a fixed-parameter algorithm
to solve the problem restricted to {0,1}-similarities in O((14k+ 14)k+1k|X |6) time,
which as shown in Section 1.2 has applications in the measurement of indifference.
Section 4.2 shows the NP-completeness of Robinson (L1, {0, 1})-Fitting and Robin-
son (Lp,N)-Fitting for p <∞.

Robinson (Lp, M)-Fitting
Input: A similarity d : X × X → M and a number ε > 0.
Question: Is there a Robinsonian similarity d ′ : X × X → M with ‖d − d ′‖p

p ≤ ε
for p <∞ and ‖d − d ′‖∞ ≤ ε for p =∞?

Additionally, we present a mixed integer program formulation of Robinson (L1,R)-
Fitting, which might help solving the problem using sophisticated mixed integer
program solvers. Section 4.3 finally focuses on the following problem variant, which
for p =∞ and M = R has been considered by Chepoi et al. [CFS09]:

Restricted Robinson (Lp, M)-Fitting
Input: A similarity d : X × X → M , a total order � on X , and a number ε > 0.
Question: Is there a similarity d ′ : X × X → M compatible with � and satisfy-

ing ‖d − d ′‖p
p ≤ ε for p <∞ and ‖d − d ′‖∞ ≤ ε for p =∞?

Algorithms solving Restricted Robinson (Lp, M)-Fitting are applicable if the object
order sought by seriation is partly known. We show that for M = R the problem is,
within arbitrary precision, solvable in polynomial time. Linear-time algorithms are
presented for the case p = 1 and M = {0, 1} and for the case p =∞ and M ∈ {N,R}.

21

4 Seriation

4.1 Partial Robinsonian Similarities

Given a similarity d : X × X → R, this section studies the problem of finding a small
subset S of outliers in X such that d is Robinsonian on the remaining set X\S. We
show that Partial Robinsonian {0,1}-Similarity is NP-complete and fixed-para-
meter tractable parameterized by the number k of sought outliers. Both results are
obtained by exploiting the close relation between Partial Robinsonian {0, 1}-Simi-
larity and the Unit Interval Vertex Deletion problem presented in Section 1.2.

Unit Interval Vertex Deletion
Input: A graph G = (V, E) and a natural number k.
Question: Is G− S a unit interval graph for some vertex set S ⊆ V with |S| ≤ k?

According to Section 3.1, Unit Interval Vertex Deletion is NP-complete. Chap-
ter 5 presents an O((14k + 14)k+1 · kn6)-time fixed-parameter algorithm for the
problem. Combining these results with the following lemma, we show that Partial
Robinsonian {0,1}-Similarity is NP-complete and fixed-parameter tractable.

Lemma 4.1. There is an O(|X |2)-time parameter-preserving reduction from Partial
Robinsonian {0,1}-Similarity to Unit Interval Vertex Deletion and vice versa.

Proof. Proposition 1.1 states that a similarity d : X×X → {0, 1} is Robinsonian if and
only if the graph G(d) = (X , E) is a unit interval graph, where E := {{x , y} | x , y ∈
X , x 6= y , and d(x , y) = 1}. Obviously, the graph G(d) is computable in O(|X |2) time.

We first show the reduction from Partial Robinsonian {0, 1}-Similarity to Unit
Interval Vertex Deletion. For a similarity d : X × X → R, (d, k) is a yes-instance
of Partial Robinsonian {0,1}-Similarity if and only if there is a set S ⊆ X such
that d|X\S is Robinsonian. This is the case precisely if G(d|X\S) = G(d)− S is a unit
interval graph, which is equivalent to (G(d), k) being a yes-instance of Unit Interval
Vertex Deletion.

We now show the reduction from Unit Interval Vertex Deletion to Partial
Robinsonian {0,1}-Similarity. Given a graph G = (X , E), consider the func-
tion dG : X × X → {0,1} such that for each x , y ∈ X it holds that dG(x , y) = 1
if {x , y} ∈ E or x = y, and dG(x , y) = 0 otherwise. Then, for x , y ∈ X , one has
dG(x , x)≥ dG(x , y) = dG(y, x)≥ 0, implying that dG is a similarity. Moreover, (G, k)
is a yes-instance of Unit Interval Vertex Deletion if and only if there is a set S ⊆ X
with |S| ≤ k such that G−S is a unit interval graph. From G(dG|X\S) = G−S it follows
that this is precisely the case if the similarity dG|X\S is Robinsonian. This is equivalent
to (dG, k) being a yes-instance of Partial Robinsonian {0, 1}-Similarity.

Chapter 5 shows an algorithm that solves Unit Interval Vertex Deletion on an
n-vertex graph in O((14k+ 14)k+1 · kn6) time. Together with the NP-completeness
of Unit Interval Vertex Deletion following from Section 3.1, Lemma 4.1 implies:

22

4.1 Partial Robinsonian Similarities

d x1 x2 x3 x4 x5

x1 2 1 2 0 0
x2 1 2 2 0 0
x3 2 2 2 2 1
x4 0 0 2 2 0
x5 0 0 1 0 2

(a) The similarity d.

x1

x2

x5

x4
x3

(b) The graph G1.

x1

x2

x5

x4
x3

(c) The graph G2.

Figure 4.1: A similarity d and the corresponding graphs Gε for ε = 1 and ε = 2.

Theorem 4.1. Partial Robinsonian {0,1}-Similarity is NP-complete and can be
solved in O((14k+ 14)k+1k|X |6) time.

Because, for a similarity d : X × X → {0, 1}, (d, k) is a yes-instance of Partial Robin-
sonian {0,1}-Similarity if and only if it is a yes-instance of Partial Robinsonian
Similarity, Theorem 4.1 also implies:

Corollary 4.1. Partial Robinsonian Similarity is NP-hard.

Exploiting a fixed-parameter algorithm for Unit Interval Vertex Deletion, we
obtained a fixed-parameter algorithm for Partial Robinsonian {0,1}-Similarity.
An obvious question to ask is whether this approach can generalized to obtain a
fixed-parameter algorithm for Partial Robinsonian Similarity. This question has
no straightforward answer, as the following example illustrates.

As stated by Roberts [Rob69, Rob78] and described in Section 1.2, a necessary
condition for a similarity d : X × X → R to be Robinsonian is that all graphs Gε are
unit interval graphs, where Gε is the graph with the vertex set X and {x , y} being
an edge if and only if x 6= y and d(x , y) ≥ ε. Figure 4.1 shows a similarity d and
the corresponding graphs Gε for ε = 1 and ε = 2, of which each contains an induced
claw (shown in Figure 3.1). As claws are forbidden induced subgraphs for unit
interval graphs, none of G1 and G2 is a unit interval graph.

Assume that, to transform G1 and G2 into unit interval graphs, we independently
apply an algorithm for Unit Interval Vertex Deletion to G1 and G2. If the algorithm
deletes x5 from X , this makes G1 a unit interval graph. However, deleting x5 from X
does not make G2 a unit interval graph. Another vertex deletion (for example, x2) is
required to also transform G2 into a unit interval graph. This transforms G1 and G2

into unit interval graphs by deleting a total number two vertices from X . We would
obtain the same result if we started by deleting x2 from X to first transform G2 into
a unit interval graph. However, if we remove the row and the column corresponding
to x3 in Figure 4.1a, then the entries in the shown table never increase when moving

23

4 Seriation

away from the main diagonal, that is, the order x1 � x2 � x4 � x5 is compatible
with d|X\{x3}. It follows that d can be made Robinsonian by deleting a single object
from X ; Unit Interval Vertex Deletion algorithms that independently work on G1

and G2 might not find this optimal solution.
This problem could be circumvented if an algorithm enumerated all minimal

vertex sets of size at most k whose deletion from a graph transforms it into a unit
interval graph: simply enumerate all such sets S for G1 and then try to delete as few
as possible additional vertices from G2 − S. However, because forbidden induced
subgraphs for unit interval graphs may be arbitrarily large, there may be O(nk)
such minimal vertex subsets of an n-vertex graph. Thus, we might not be able to
enumerate them in f (k) · |G|c time for a constant c. As a consequence, it remains an
open question whether Partial Robinsonian Similarity is fixed-parameter tractable.

4.2 Robinson Fitting

This section studies the Robinson (Lp, M)-Fitting problem. First, Section 4.2.1
shows the NP-completeness of Robinson (L1, {0, 1})-Fitting. From this, the NP-com-
pleteness of Robinson (Lp,N)-Fitting with p <∞ is derived. Then, Section 4.2.2
presents a mixed integer program formulation of Robinson (L1,R)-Fitting. This
mixed integer program is easily modifiable to additionally solve the problem variants
Robinson (Lp, M)-Fitting for all combinations of p ∈ {1,∞} and M ∈ {R,N, {0, 1}}.
The mixed integer program formulation might help solving these problem variants
using sophisticated mixed integer program solvers.

4.2.1 NP-Completeness

This subsection shows that Robinson (Lp,N)-Fitting is NP-complete. This com-
plements the NP-completeness result for Robinson (L∞,R)-Fitting, which can be
obtained by exploiting that a dissimilarity d : X × X → R is Anti-Robinsonian if and
only if ‖d‖∞− d is a Robinsonian similarity and by exploiting the NP-completeness
of Anti-Robinson (Lp,R)-Fitting [CFS09]:

Anti-Robinson (Lp, M)-Fitting
Input: A dissimilarity d : X × X → M and a number ε > 0.
Question: Is there an Anti-Robinsonian dissimilarity d ′ : X × X → M with ‖d −

d ′‖p
p ≤ ε for p <∞ and ‖d − d ′‖∞ ≤ ε for p =∞?

Barthélemy and Brucker [BB01] have shown NP-completeness of a problem related to
Anti-Robinson (Lp,N)-Fitting; however, they pose additional requirements on the

24

4.2 Robinson Fitting

sought dissimilarity d ′. These requirements are exploited in their NP-completeness
proof. Therefore, their NP-completeness result does not generalize to (Anti-)Robin-
son (Lp,N)-Fitting. We now show that Robinson (L1, {0, 1})-Fitting is NP-complete
and, from this, derive the NP-completeness of Robinson (Lp,N)-Fitting.

To show the NP-completeness of Robinson (L1, {0,1})-Fitting, we exploit the
characterization of Robinsonian similarities by unit interval graphs (see Section 1.2).
We reduce Unit Interval Editing to Robinson (L1, {0,1})-Fitting.

Unit Interval Editing
Input: A graph G = (V, E) and a natural number k.
Question: Is there a unit interval graph G′ = (V, E′) with |E∆E′| ≤ k?

As shown by Burzyn et al. [BBD06], Unit Interval Editing is NP-complete even on
cubic planar graphs.

Lemma 4.2. Robinson (L1, {0, 1})-Fitting is NP-complete.

Proof. We first show that the problem is contained in NP: given a similarity d ′ : X ×
X → {0,1} for an input similarity d : X × X → {0,1}, we can in polynomial-time
check whether d is Robinsonian [MR84, CF97, ABH99]. To check ‖d − d ′‖1 ≤ ε,
observe that the distance ‖d − d ′‖1 always is an integer. Therefore, ‖d − d ′‖1 ≤ ε is
equivalent to ‖d − d ′‖1 ≤ bεc. Thus, a Turing machine only has to read the integer
part of the ε in an instance (d,ε); it can read the input in finite time.

To show that Robinson (L1, {0,1})-Fitting is NP-hard, we now show a polyno-
mial-time reduction from Unit Interval Editing to Robinson (L1, {0,1})-Fitting.
For a graph G = (V, E), let dG : V × V → {0, 1} be a similarity such that dG(v, w) = 1
if v = w or {v, w} ∈ E, and dG(v, w) = 0 otherwise. Obviously, dG can be computed
in polynomial time. To show that Robinson (L1, {0, 1})-Fitting is NP-hard, we show
that (G, k) is a yes-instance of Unit Interval Editing if and only if (dG, k) is a
yes-instance of Robinson (L1, {0, 1})-Fitting.

If (G = (V, E), k) is a yes-instance of Unit Interval Editing, then there is a unit
interval graph G′ = (V, E′) with |E∆E′| ≤ k. By Proposition 1.1, it follows that the
{0, 1}-similarity dG′ is Robinsonian. Moreover, because dG and dG′ are {0, 1}-similar-
ities, ‖dG − dG′‖1 counts the values that differ between dG and dG′ , which is exactly
the number of edges in E∆E′. Thus, one has ‖dG − dG′‖1 ≤ k, implying that (dG, k)
is a yes-instance of Robinson (L1, {0,1})-Fitting.

If (dG, k) is a yes-instance of Robinson (L1, {0, 1})-Fitting, then there is a Robin-
sonian similarity d ′ : V × V → {0,1} with ‖dG − d ′‖1 ≤ k. By Proposition 1.1, the
graph G′ = (V, E′) with E′ := {{u, v} | u, v ∈ V, u 6= v, d ′(u, v) = 1} is a unit interval
graph. For the same reason as above, ‖dG − d ′‖1 ≤ k implies |E′∆E| ≤ k. Thus,
(G, k) is a yes-instance of Unit Interval Editing.

25

4 Seriation

To generalize Lemma 4.2 to Robinson (Lp,N)-Fitting, we exploit the following
observation. It implies that, without loss of generality, we may assume that the
maximum value taken by a solution similarity d ′ to the Robinson (Lp,R)-Fitting
problem is not larger than the maximum value taken by the input similarity.

Observation 4.1. Let d, d ′ : X ×X → M be similarities such that d ′ is compatible with
some total order � on X . Then, there is a similarity d∗ : X ×X → M compatible with �
and satisfying ‖d − d∗‖p ≤ ‖d − d ′‖p and ‖d∗‖∞ ≤ ‖d‖∞.

Proof. For each x , y ∈ X , choose d∗(x , y) :=min{‖d‖∞, d ′(x , y)}. By this definition,
‖d∗‖∞ ≤ ‖d‖∞ holds. From d(x , y)≤ ‖d‖∞ for all x , y ∈ X , we conclude

|d(x , y)− d∗(x , y)|= |d(x , y)−min{‖d‖∞, d ′(x , y)}| ≤ |d(x , y)− d ′(x , y)|.

Thus, ‖d − d∗‖p ≤ ‖d − d ′‖p. It remains to show that d∗ is compatible with �.
For x � y � z, we show d∗(x , z)≤ d∗(x , y) and d∗(x , z)≤ d∗(y, z).

For the sake of contradiction, assume that d∗(x , z)> d∗(x , y). By definition of d∗,
this implies ‖d‖∞ > d∗(x , y) and therefore d∗(x , y) = d ′(x , y). It follows that
d ′(x , z)≥ d∗(x , z)> d∗(x , y) = d ′(x , y), contradicting � being compatible with d ′.
Analogously, d∗(x , z)≤ d∗(y, z) can be shown.

Theorem 4.2. Robinson (Lp,N)-Fitting is NP-complete.

Proof. We first show that the problem is contained in NP. Given a similarity d ′ : X ×
X → N for an input similarity d : X × X → N, we can in polynomial-time check if
d is Robinsonian [MR84, CF97, ABH99]. For the same reason as in the proof of
Lemma 4.2, we can also check ‖d − d ′‖p

p ≤ ε in polynomial time.
To show that Robinson (Lp,N)-Fitting is NP-hard, we show that (d,ε) is a yes-in-

stance of Robinson (L1, {0, 1})-Fitting, which is NP-complete by Lemma 4.2, if and
only if (d,ε) is a yes-instance of Robinson (Lp,N)-Fitting.

If (d,ε) is a yes-instance of Robinson (L1, {0,1})-Fitting, then there is a simi-
larity d ′ : X × X → {0,1} with ‖d ′ − d‖1 ≤ ε. Observe that for each x , y ∈ X , the
difference |d(x , y)− d ′(x , y)| ∈ {0, 1}. We conclude that ‖d ′− d‖p

p = ‖d
′− d‖1 ≤ ε.

It follows that (d,ε) is a yes-instance of Robinson (Lp,N)-Fitting.
If (d,ε) is a yes-instance of Robinson (Lp,N)-Fitting, then there is a similar-

ity d ′ : X × X → N with ‖d − d ′‖p
p ≤ ε. By Observation 4.1, we may assume that

‖d ′‖∞ ≤ ‖d‖∞ ≤ 1, that is, we may assume d ′ to be a {0,1}-similarity. This again
implies that ‖d − d ′‖1 = ‖d − d ′‖p

p ≤ ε. It follows that (d,ε) is a yes-instance of
Robinson (L1, {0,1})-Fitting.

26

4.2 Robinson Fitting

4.2.2 A Mixed Integer Program

This subsection presents a mixed integer program for, given a similarity d : X ×
X → R, finding a Robinsonian similarity d ′ : X × X → R that minimizes ‖d − d ′‖1.
A mixed integer program consists of a linear objective function whose arguments
are constrained by linear equations and inequalities. Subject to these constraints,
the global minimum of the objective function shall be found. The arguments of the
objective function are real numbers; some arguments may additionally be required
to be integers. If no argument is required to be an integer, then the mixed integer
program is a linear program, which can be solved in polynomial time [Kha79, Kar84].
In contrast, solving general mixed integer programs is NP-hard [GJ79].

The following mixed integer program formulation might be helpful to solve Ro-
binson (L1,R)-Fitting using sophisticated mixed integer solvers. The mixed integer
program is easily modifiable to also solve Robinson (Lp, M)-Fitting for p ∈ {1,∞}
and M ∈ {N,R}. However, it will not give insights into the complexity of Robinson
(Lp,R)-Fitting, which, to our knowledge, is still open. This stands in contrast to
Robinson (Lp,N)-Fitting, which Theorem 4.2 shows to be NP-complete.

Let d : X × X → R be a similarity. We present a mixed integer program in
O(|X |2) variables and O(|X |3) constraints that enables us to find a Robinsonian
similarity d ′ : X × X → R that minimizes ‖d − d ′‖1. We seek to minimize

(4.1) ‖d − d ′‖1 =
1

2

∑

x 6=y
x ,y∈X

|d(x , y)− d ′(x , y)|.

under the constraint that d ′ is Robinsonian. Here, for all x , y ∈ X , the value d(x , y) ∈
R is fixed and the similarity d ′ is to be determined by the optimum solution to the
mixed integer program. That is, we consider d ′(x , y) as a variable. We trans-
form (4.1) into the linear objective function f (t) := 1

2

∑

x ,y∈X ,x 6=y t x y , where the
variables t x y are determined by the linear constraints

∀x , y ∈ X , x 6= y : t x y ≥ d(x , y)− d ′(x , y), and(4.2)

∀x , y ∈ X , x 6= y : t x y ≥ d ′(x , y)− d(x , y).

It remains to express the constraint of d ′ being Robinsonian in terms of linear
equations and inequalities. As we do not only want to obtain the Robinsonian
similarity d ′ that minimizes ‖d − d ′‖1 but also the order with which it is compatible,
we introduce an integer variable ox y for each pair x , y ∈ X . Here ox y = 0 corresponds
to x � y and ox y = 1 corresponds to x 6� y. We have to make sure that the order
induced by the variables ox y has no incomparable pairs and that it is antisymmetric,

27

4 Seriation

reflexive, and transitive. The first three properties are ensured by the constraints

∀x , y ∈ X , x 6= y : ox y + oy x = 1,

∀x , y ∈ X , x 6= y : ox y ∈ {0, 1},
∀x ∈ X : ox x = 0.

It remains to ensure transitivity of the order induced by the variables ox y : if x �
y � z holds, then ox y = oyz = 0. As x � y � z shall imply x � z, we require

∀x , y, z ∈ X : oxz ≤ ox y + oyz.

Finally, d ′ shall be a similarity compatible with the order induced by the variables ox y .
The following constraints require d ′ to be symmetric and nonnegative:

∀x , y ∈ X : d ′(x , y) = d ′(y, x),
∀x , y ∈ X : d ′(x , y)≥ 0.

It remains to ensure that d ′ is compatible with �. To this end, we exploit that
Observation 4.1 guarantees the existence of an optimal solution d ′ satisfying ‖d ′‖∞ ≤
‖d‖∞. Observe that since the input similarity d is fixed, ‖d‖∞ is precomputable and
also fixed. Therefore, the following constraints are indeed linear:

∀x , y ∈ X : d ′(x , y)≤ ‖d‖∞,(4.3)

∀x , y, z ∈ X : ‖d‖∞ · (ox y + oyz) + d ′(x , y)≥ d ′(x , z),(4.4)

∀x , y, z ∈ X : ‖d‖∞ · (ox y + oyz) + d ′(y, z)≥ d ′(x , z).

If ox y = oyz = 0, that is, if x � y � z holds, then the constraints (4.4) ensure that
d ′(x , y) and d ′(y, z) are at least d ′(x , z). If, on the contrary, ox y = 1 or oyz = 1, then
the constraints (4.4) are trivially satisfied because of constraint (4.3).

Correctness. Given a similarity d : X × X → R, let f ∗ be the optimum value of the
objective function f and let d∗ be a Robinsonian similarity that minimizes ‖d − d∗‖1.
To show that the mixed integer program is correct, we show ‖d − d∗‖1 = f ∗.

We first show ‖d − d∗‖1 ≤ f ∗. If the mixed integer program yields an assignment
to the variables d ′(x , y) under which the objective function f obtains the mini-
mum value f ∗, then d ′ is a Robinsonian similarity by constraints (4.3, 4.4). From
constraint (4.2), it follows that f ∗ ≥ ‖d − d ′‖1 ≥ ‖d − d∗‖1.

We now show f ∗ ≤ ‖d − d∗‖1. By Observation 4.1, we may assume that ‖d∗‖∞ ≤
‖d‖∞. Moreover, there is an order � that is compatible with d∗. We now obtain an
assignment to the variables of the mixed integer program as follows: for all x , y ∈ X ,

28

4.3 Restricted Robinson Fitting

let d ′(x , y) = d∗(x , y), t x y = |d(x , y)− d ′(x , y)|, and ox y = 0 if x � y and ox y = 1
otherwise. The variables d ′(x , y), ox y , and t x y satisfy all constraints of the mixed
integer program. Under this assignment, the objective function f obtains the
value ‖d − d ′‖1. That is, we have ‖d − d∗‖1 = ‖d − d ′‖1 = f ≥ f ∗.

The presented mixed integer program formulation of Robinson (L1,R)-Fitting
can be used to solve seriation problems by transforming given similarity data into
problem descriptions of mixed integer program solvers. It is straightforward to
test the practical efficiency of the presented mixed integer program by generating
problem descriptions for mixed integer program solvers like GLPK1 and ILOG CPLEX2.
If real-world similarity data is unavailable for experiments, then artificial similarity
data can be obtained by perturbing a randomly generated Robinsonian similarity.

4.3 Restricted Robinson Fitting

This section focuses on a variant of Robinson (Lp, M)-Fitting that is motivated by
seriation problems where parts of the sought order are already known. In this case,
we can model the seriation problem as follows:

Partially Restricted Robinson (Lp, M)-Fitting
Input: A similarity d : X × X → M , a partial order v on X , and a number ε.
Question: Is there a similarity d ′ : X × X → M compatible with a linear extension

of v and ‖d − d ′‖p
p ≤ ε for p <∞ and ‖d − d ′‖∞ ≤ ε for p =∞?

Giving an empty order v as input yields the Robinson (Lp, M)-Fitting problem.
Thus, following from Theorem 4.2 and Chepoi et al. [CFS09], respectively, Partially
Restricted Robinson (Lp,N)-Fitting and Partially Restricted Robinson (L∞,R)-
Fitting are NP-hard. In particular, it follows from Chepoi et al. [CFS09] that
Partially Restricted Robinson (L∞,R)-Fitting is NP-hard even for ε = 3, implying
that unless P= NP the problem is not fixed-parameter tractable parameterized by ε.

We can solve Partially Restricted Robinson (Lp, M)-Fitting by first enumer-
ating all linear extensions � of v. If X contains ∆ incomparable pairs with respect
to �, then there are at most 2∆ linear extensions of v, since for each of the ∆ in-
comparable pairs x , y ∈ X , we can choose between x � y and y � x . For each of
the at most 2∆ linear extensions � of v, we then solve the following problem:

1http://www.gnu.org/software/glpk/
2http://www-01.ibm.com/software/integration/optimization/cplex/

29

http://www.gnu.org/software/glpk/
http://www-01.ibm.com/software/integration/optimization/cplex/

4 Seriation

Restricted Robinson (Lp, M)-Fitting
Input: A similarity d : X × X → M , a total order � on X , and a number ε > 0.
Question: Is there a similarity d ′ : X × X → M compatible with � and satisfy-

ing ‖d − d ′‖p
p ≤ ε for p <∞ and ‖d − d ′‖∞ ≤ ε for p =∞?

This is congruent with the intuition that the seriation problem becomes easier the
more of the sought total order is already known. It immediately follows that:

Proposition 4.1. If Restricted Robinson (Lp, M)-Fitting is polynomial-time solv-
able, then Partially Restricted Robinson (Lp, M)-Fitting is fixed-parameter tract-
able with respect to the number of incomparable pairs in X as parameter.

Chepoi et al. [CFS09] have shown that Restricted Robinson (L∞,R)-Fitting is solv-
able in polynomial time. As a consequence, Partially Restricted Robinson (L∞,R)-
Fitting is fixed-parameter tractable parameterized by the number of incomparable
pairs in X . We now focus on solving Restricted Robinson (Lp, M)-Fitting in
polynomial time. Section 4.3.1 starts by showing that Robinson (Lp,R)-Fitting is
polynomial-time solvable within arbitrary precision. Section 4.3.2 and Section 4.3.3
show linear-time algorithms for Restricted Robinson (L∞,R)-Fitting and Restric-
ted Robinson (L1, {0, 1})-Fitting, respectively.

In this subsection, we use the term simple arithmetic operation to refer to an addition
or comparison of two real numbers.

4.3.1 Polynomial-Time Lp-Fitting by Real-Valued Similarities

Given a similarity d : X × X → R and a total order �, this section focuses on finding
a similarity d∗ : X × X → R compatible with � that minimizes ‖d − d∗‖p

p. While the
similarity d∗ that minimizes ‖d − d∗‖∞ can be found in polynomial time [CFS09],
we encounter a problem when minimizing ‖d − d∗‖p

p: in general, it might happen
that we cannot output the binary numeral representation of the optimal solution d∗

in polynomial time, as illustrated in Figure 4.2. We circumvent the problem by
adopting the optimality concept used by Nesterov and Nemirovskii [NN87] in their
book on convex optimization:

Definition 4.1. Given a similarity d : X × X → R and a total order � on X , let d∗ be
a similarity compatible with � and minimizing ‖d − d∗‖p

p. We say that Robinson
(Lp, R)-Fitting is within precision ε̄ solvable in polynomial time if we can compute, in
time polynomial in the size of (d,�) and proportional to log ε̄−1, a similarity d ′ with
‖d − d ′‖p

p ≤ ‖d − d∗‖p
p + ε̄ that satisfies d ′(x , z)≤min{d ′(x , y), d ′(y, z)}+ ε̄ for all

objects x , y, z ∈ X with x � y � z.

30

4.3 Restricted Robinson Fitting

d x1 x2 x3

x1 2 1 2
x2 1 2 1
x3 2 1 2

d∗ x1 x2 x3

x1 2
p

2
p

2
x2

p
2 2

p
2

x3

p
2
p

2 2

Figure 4.2: The similarity d∗ minimizes the distance ‖d − d∗‖3
3. Because d∗ obtains

irrational values, a Turing machine cannot output the binary numeral representation
of d∗ in finite time.

By Definition 4.1, if the required precision is increased by one bit, say for example,
ε̄−1 is increased from 2i to 2i+1, then the factor log ε̄−1 increases only by one. After
a brief introduction into convex programming, we employ Definition 4.1 to prove
the following theorem:

Theorem 4.3. Restricted Robinson (Lp,R)-Fitting is, within arbitrary precision,
solvable in polynomial time.

The proof of Theorem 4.3 employs convex programming [NN87], which, like mixed
integer programming as applied in Section 4.2.2, is a generalization of linear pro-
gramming. A convex program consists of a convex function whose global minimum is
to be found under given constraints on its arguments, where the set of all arguments
satisfying the constraints, called feasible region, is convex.

The advantage of convex programs over linear programs is that the problem mod-
eling capabilities of convex programs are not restricted to linear objective functions
and constraints. Despite their increased modeling power, many convex programs
are still solvable in polynomial time [NN87]. This is in contrast to optimization
problems with non-convex objective functions or non-convex feasible regions. These
problems are often NP-complete; a few examples shall illustrate this.

Linear programs are special forms of convex programs. They are solvable in
polynomial time [Kha79, Kar84]. In contrast, solving mixed integer programs
is generally NP-hard [GJ79]. Observe that the feasible region of mixed integer
programs is generally not convex: for example, mixed integer programs allow for
constraints that require a variable to be contained in the non-convex set {0,1}.
As another example, consider the objective function f : Rn → R, x 7→ ‖x − z‖p

p
for fixed z ∈ Rn and p ∈ [0,1), whose global minimum shall be found under
linear constraints. This problem is generally NP-hard [GJY10]. Here, the objective
function f is non-convex. The feasible region, however, is convex because it is
determined by linear constraints. As stated in Chapter 2, we only consider Lp-norms
for p ≥ 1, for which the minimization problem turns out to be polynomial-time
solvable [NN87].

31

4 Seriation

Proof of Theorem 4.3. For Robinson (L∞,R)-Fitting, Theorem 4.3 follows from
Chepoi et al. [CFS09], who have shown that, for a given similarity d : X × X → R
and a total order �, a similarity d∗ : X × X → R that is compatible with � and
that minimizes ‖d − d∗‖∞ is computable in polynomial time. It remains to show
that Robinson (Lp,R)-Fitting is, within arbitrary precision, solvable in polynomial
time for p <∞. To this end, we employ a special-case convex program: assume
that we are given linear functions f1, . . . , fm : Rn → R called constraints and a
vector b ∈ Rn of constants. The task is to find a vector z ∈ Rn of variables that
satisfies the constraints fi(z)≤ 0 for i ∈ {1, . . . , m} and that minimizes ‖z− b‖p

p. This
is modeled by the following convex program, which is, within arbitrary precision,
solvable in polynomial time [NN87, Section 6.3.2]:

minimize f0(z) =
n
∑

j=1

|z j − b j|p, where z ∈ Rn,(CP)

subject to fi(z)≤ 0 for i ∈ {1, . . . , m},
‖z‖2 ≤ R, and f0(z)≤ V.

Here, the constraints ‖z‖2 ≤ R and f0(z) ≤ V are technical details that Nesterov
and Nemirovskii [NN87] exploit to show that the convex program (CP) is, within
arbitrary precision, solvable in polynomial time. The numbers R and V must be
given as input to the convex program and must be fixed, that is, independent from
the vector z of variables. The running time for solving the convex program (CP) is
then independent from R but proportional to log V [NN87, Section 6.3.2].

Given a similarity d : X × X → R and a total order � on X , we model the task of
finding a similarity d ′ : X × X → R compatible with � that minimizes ‖d − d ′‖p

p in
terms of the convex program (CP). We seek to minimize the objective function

‖d − d ′‖p
p =
∑

x�y,x 6=y

|d(x , y)− d ′(x , y)|p

under the constraint that d ′ is compatible with �. Here, the similarity d is fixed
and given as input. The similarity d ′ is to be determined by the global minimum of
the convex program. To this end, the convex program determines the value d ′(x , y)
for each x , y ∈ X , that is, d ′(x , y) is a variable in the convex program. Intuitively,
the similarity d corresponds to the vector b of constants in (CP) and the sought
similarity d ′ corresponds to the vector z of variables in (CP). This convex program
formulation uses O(|X |2) variables. It remains to ensure that the sought similarity d ′

is compatible with �. To this end, we devise O(|X |3) linear constraints, which corre-
spond to the constraints fi(z)≤ 0 in (CP). First, we require that d ′ is nonnegative.
For all x � y , it shall hold that

−d ′(x , y)≤ 0.(4.5)

32

4.3 Restricted Robinson Fitting

Moreover, the resulting similarity d ′ shall be compatible with �, that is, for all
objects x i � x j � xk, the similarity d ′ shall satisfy

d ′(x i, xk)− d ′(x j, xk)≤ 0(4.6)

d ′(x i, xk)− d ′(x i, x j)≤ 0

For an optimal assignment to the variables d ′(x , y) of the convex program, we obtain
a similarity d∗ that is compatible with the given order � by choosing d∗(x , y) =
d∗(y, x) = d ′(x , y) for all x � y, x 6= y and d∗(x , x) = ‖d ′‖∞. Moreover, any
similarity d ′ compatible with � satisfies the constraints (4.5) and (4.6). Now, the
correctness of the convex program follows in the same way as the correctness of the
mixed integer program in Section 4.2.2.

To show that the convex program is solvable in polynomial time, it remains to
find numbers R and V such that there is a similarity d ′ compatible with � that
minimizes ‖d − d ′‖p

p and satisfies ‖d ′‖2 ≤ R and ‖d − d ′‖p
p ≤ V . By Observation 4.1,

there is a similarity d ′ : X × X → R compatible with � that minimizes ‖d − d ′‖p
p and

satisfies ‖d ′‖∞ ≤ ‖d‖∞. Because ‖d ′‖2
2 is the sum of 1/2 · |X | · (|X | − 1) squares of

values that do not exceed ‖d‖∞, the similarity d ′ satisfies

‖d ′‖2 ≤ R :=
p

|X |2 · ‖d‖2
∞ = |X | · ‖d‖∞.

Exploiting the triangle inequality for Lp-norms, we also find the number V , since

‖d − d ′‖p ≤ ‖d‖p + ‖d ′‖p ≤ 2 p
p

|X |2 · ‖d‖p
∞.

It follows that ‖d − d ′‖p
p ≤ V := 2p · |X |2 · ‖d‖p

∞. Observe that O(log V) = O(log |X |+
log‖d‖∞), since p is a problem-specific constant. Thus, O(log V) is polynomial in
the input size. As the running time for solving (CP) is polynomial in the input size
and proportional to log V [NN87, Section 6.3.2], Theorem 4.3 follows. Nesterov
and Nemirovskii [NN87] also give a more detailed running time bound proportional
to n2(m+ n)3/2 · log(m+ n)V ε̄−1 for solving (CP), where in our case the number n of
variables in O(|X |2) and the number m of constraints is O(|X |3).

4.3.2 Linear-Time L∞-Fitting

This subsection presents an algorithm that decides Restricted Robinson (L∞,R)-
Fitting using O(|X |)2 simple arithmetic operations. We then show, given a similarity
d : X × X → R and a total order � on X , how the algorithm can be employed to
compute a similarity d ′ : X × X → R compatible with � and minimizing ‖d − d ′‖∞
within a given precision ε̄ > 0, that is, such that the minimum distance ‖d − d∗‖∞ for
any similarity d∗ : X ×X → R compatible with � satisfies ‖d−d ′‖∞ ≤ ‖d−d∗‖∞+ ε̄.

33

4 Seriation

x4x3x2x1

x1

x2

x3

x4

d

Figure 4.3: The secondary diagonals of d are processed starting at d(x1, x4) and
approaching the main diagonal. Each entry d(x i, xk) is modified to satisfy (4.7),
which expresses that entries do not decrease when moving away from the main
diagonal starting at the entry d(x i, xk).

We start with an intuitive description the algorithm. Given a similarity d : X ×X →
R, a total order x1 � . . . � xn on X , and a number ε > 0, we search for a simi-
larity d ′ : X × X → R that is compatible with � and that satisfies ‖d − d ′‖∞ ≤ ε.
To this end, we try to make d compatible with � by increasing or decreasing the
value d(x i, xk) for each object pair x i, xk ∈ X by at most ε. Obviously, to make d
compatible with �, for any two objects x i, xk ∈ X with x i � xk, the similarity d must
be modified to satisfy

d(x i−1, xk)≤ d(x i, xk) and d(x i, xk+1)≤ d(x i, xk),(4.7)

if x i−1 or xk+1 exist, respectively. In the following, we say that d(x i, xk) obtains its
smallest possible value if for all similarities d ′ : X × X → R compatible with � and
satisfying ‖d − d ′‖∞ ≤ ε, it holds that d(x i, xk) ≤ d ′(x i, xk). Now, assume that we
want to modify d to satisfy (4.7) for d(x i, xk) and that d(x i−1, xk) and d(x i, xk+1)
already obtain their smallest possible values. If (4.7) cannot be satisfied by increas-
ing d(x i, xk) by at most ε, then we can show that no similarity d ′ compatible �
and satisfying ‖d − d ′‖∞ ≤ ε exists. In this case, (d,�,ε) is a no-instance. This
is exploited by Algorithm 4.1, which intuitively works as follows: in the order
shown in Figure 4.3, Algorithm 4.1 processes each entry d(x i, xk) after d(x i−1, xk)
and d(x i, xk+1) (which are displayed on top and to the right of d(x i, xk) in Fig-
ure 4.3, respectively) have already been set to their smallest possible values. If (4.7)
is satisfiable for d(x i, xk) by increasing d(x i, xk) by at most ε, then d(x i, xk) is set to
its smallest possible value. Otherwise, “no” is returned. Processing starts at d(x1, xn),
because (4.7) is easy to satisfy for d(x1, xn).

Lemma 4.3. Algorithm 4.1 is correct and uses O(|X |2) simple arithmetic operations.

Proof. The running time bound is easy to see. It remains to prove that Algorithm 4.1
is correct. We first show that if Algorithm 4.1 returns a similarity d ′, then d ′ is

34

4.3 Restricted Robinson Fitting

Algorithm 4.1: Robinson (Lp,R)-Fitting
Input: A similarity d : X × X → R, a total order x1 � x2 � . . .� xn on X , and a

positive number ε.
Output: A similarity d ′ : X × X → R with ‖d − d ′‖∞ ≤ ε compatible with �, or

“no” if no such similarity exists.
1 for i := 1 to n do // setup sentinel elements x0 and xn+1.
2 d(x0, x i)← 0;
3 d(x i, xn+1)← 0

4 for i := n to 1 do
5 for j := 1 to n− i+ 1 do // choose d(x j, x i+ j−1) as follows:
6 ∆←max{d(x j−1, x i+ j−1), d(x j, x i+ j)} − d(x j, x i+ j−1);
7 if ∆> ε then return “no”;
8 else d(x j, x i+ j−1)← d(x j, x i+ j−1) +max{∆,−ε};

9 Make d symmetric;
10 return d;

compatible with � and satisfies ‖d − d ′‖∞ ≤ ε. Then, we prove that if Algorithm 4.1
returns “no”, then (d,�,ε) is a no-instance.

Assume that Algorithm 4.1 returns a similarity d ′. Then, the similarity d ′ sat-
isfies d ′(x i, xk) ≥ max{d ′(x i−1, xk), d ′(x i, xk+1)} for each x i, xk ∈ X . That is, the
values of d ′ never increase when moving away from the main diagonal. Hence, d ′

is compatible with �. Moreover, the returned similarity d ′ satisfies ‖d − d ′‖∞ ≤ ε,
because each value d ′(x i, xk) is obtained by increasing or decreasing d(x i, xk) by at
most ε. It follows that (d,�,ε) is a yes-instance.

To show that if Algorithm 4.1 returns “no”, then (d,�,ε) is a no-instance, we
employ the following definition: we say that d(x i, xk) obtains its smallest possible
value if for all similarities d ′ : X × X → R compatible with � and satisfying ‖d −
d ′‖∞ ≤ ε, it holds that d(x i, xk) ≤ d ′(x i, xk). We now reproduce the process of
Algorithm 4.1 until it returns “no”. Algorithm 4.1 processes d in the order shown in
Figure 4.3, starting at d(x1, xn). For the elements x0 and xn introduced in line 1 of
Algorithm 4.1, we have d(x0, xn) = d(x1, xn+1) = 0. As a consequence, Algorithm 4.1
sets d(x1, xn) to max{0, d(x1, xn)− ε} in line 8. This is the smallest possible value
for d(x1, xn). The remaining proof works inductively: assume that Algorithm 4.1
processes d(x i, xk). In this case, d(x i−1, xk) and d(x i, xk+1) have already been set to
their smallest possible values. If Algorithm 4.1 does not return “no” in line 7, then
d(x i, xk) is set to its smallest possible value in line 8 of Algorithm 4.1, which is one
of d(x i, xk)− ε, d(x i−1, xk), or d(x i, xk+1).

35

4 Seriation

Now, on the contrary, assume that Algorithm 4.1 returns “no” in line 7 and, for
the sake of contradiction, assume that there is a similarity d ′ compatible with �
that satisfies ‖d − d ′‖∞ ≤ ε. As d ′ is compatible with �, one has d ′(x i, xk) ≥
d ′(x i−1, xk) and d ′(x i, xk)≥ d ′(x i, xk+1). Because d(x i−1, xk) and d(x i, xk+1) already
obtain their smallest possible values, one has, in turn, d ′(x i−1, xk)≥ d(x i−1, xk) and
d ′(x i, xk+1) ≥ d(x i, xk+1). Since Algorithm 4.1 returns “no” in line 7, it holds that
d(x i−1, xk)> d(x i, xk) + ε or d(x i, xk+1)> d(x i, xk) + ε. This, however shows

d ′(x i, xk)≥max{d ′(x i−1, xk), d ′(x i, xk+1)}
≥max{d(x i−1, xk), d(x i, xk+1)}
> d(x i, xk) + ε,

which contradicts ‖d − d ′‖∞ ≤ ε. Hence, there is no similarity d ′ compatible with �
and satisfying ‖d − d ′‖∞ ≤ ε. It follows that (d,�,ε) is a no-instance.

Observe that, until now, Algorithm 4.1 merely solves the decision problem Robinson
(L∞,R)-Fitting: for a yes-instance (d,�,ε), Algorithm 4.1 returns a similarity d ′

compatible with � that satisfies ‖d − d ′‖∞ ≤ ε, but it does not necessarily return
a similarity d ′ such that ‖d − d ′‖∞ is minimized. In the following, we show how
Algorithm 4.1 can be exploited to compute a similarity d ′ compatible with � such
that the minimum distance ‖d − d∗‖∞ for any similarity d∗ : X × X → R compatible
with � satisfies ‖d − d ′‖∞ ≤ ‖d − d∗‖∞+ ε̄, where ε̄ > 0 is a given precision.

Theorem 4.4. Given a similarity d : X ×X → R and a total order � on X , a similarity
d ′ : X × X → R that minimizes ‖d − d ′‖∞ within precision ε̄ is computable using
O(|X |2 · log‖d‖∞ε̄−1) simple arithmetic operations.

Proof. Given a similarity d : X × X → R and a total order � on X , let ε∗ denote
the minimum value for which (d,�,ε∗) is a yes-instance of Robinson (L∞,R)-Fit-
ting. If ε∗ ≥ ‖d‖∞, then (d,�,ε∗) trivially is a yes-instance since the Robinsonian
similarity d∗ = 0 satisfies ‖d∗ − d‖∞ ≤ ‖d‖∞ ≤ ε∗. Thus, we have 0 ≤ ε∗ < ‖d‖∞
and the minimum ε in the set {iε̄ | 0 ≤ i ≤ ‖d‖∞ε̄−1} for which (d,�,ε) is a
yes-instance satisfies |ε − ε∗| ≤ ε̄. Since this set contains O(‖d‖∞ε̄−1) values, ε is
computable using binary search by solving O(log‖d‖∞ε̄−1) instances of Restricted
Robinson (L∞,R)-Fitting. As Algorithm 4.1 solves a Restricted Robinson (L∞,R)-
Fitting instance using O(|X |2) simple arithmetic operations and also outputs the
corresponding Robinsonian similarity if it exists, Theorem 4.4 follows.

Theorem 4.4 can be specialized for Robinson (Lp,N)-Fitting. To this end, observe
that given a similarity d : X × X → N and an integer ε, Algorithm 4.1 returns a
similarity that maps to integer values. Thus, by choosing precision ε̄ = 1, one obtains:

36

4.3 Restricted Robinson Fitting

d ′ x i−1 x i x j xk xn

x i−1 1 1 1 0 0
x i 1 1 1 0
x j 1 1 0
xk 1 1
xn 1

Figure 4.4: As d ′ is compatible with �, the values never increase when moving
away from the main diagonal. The object xk is the d ′-boundary for x i. The object x j

is the d ′-boundary for x i−1 and satisfies x j � xk.

Corollary 4.2. Given a similarity d : X × X → N and a total order � on X , a sim-
ilarity d ′ : X × X → N that is compatible with � and that minimizes ‖d − d ′‖∞ is
computable in O(|X |2 · log‖d‖∞) time.

Theorem 4.4 complements a result by Chepoi et al. [CFS09], who have shown that,
for a given similarity d : X × X → R and a total order �, a similarity d∗ : X × X → R
that is compatible with � and that minimizes ‖d−d∗‖∞ is computable in polynomial
time. A straightforward transformation of their proof into an algorithm yields an
algorithm that uses O(|X |4) simple arithmetic operations. However, in contrast to our
approach, which for a given precision ε̄ only finds a similarity d ′ with ‖d − d ′‖∞ ≤
‖d − d∗‖∞+ ε̄, Chepoi et al. [CFS09] find the optimal solution d∗.

4.3.3 Linear-Time L1-Fitting by {0, 1}-Similarities

This subsection shows a dynamic programming algorithm that, given a similar-
ity d : X × X → {0,1} and a total order x1 � x2 � . . . � xn on X , finds a similar-
ity d ′ : X × X → {0,1} that is compatible with � and minimizes ‖d − d ′‖1. We
assume, without loss of generality, that all similarities d ′ : X × X → {0,1} satisfy
d ′(x , x) = 1 for all x ∈ X . Observe that we can always modify a similarity to satisfy
this assumption without increasing the distance ‖d − d ′‖1.

The algorithm presented in this subsection is based on the following observation,
which immediately follows from the fact that a similarity d ′ : X × X → {0,1} is
compatible with a total order x1 � . . . � xn on X if and only if its values never
increase when moving away from the main diagonal in a table whose entry in the
i-th row and k-th column displays d ′(x i, xk). In the following observation, which is
illustrated in Figure 4.4, we call an object xk the d ′-boundary of an object x i if xk is
the maximum object in � with d ′(x i, xk) = 1.

Observation 4.2. A similarity d ′ : X×X → {0, 1} is compatible with a total order x1 �
x2 � . . .� xn on X if and only if for every object x i and its d ′-boundary xk it holds that

37

4 Seriation

1. d ′(x i, x j) = 1 for all objects x j with x i � x j � xk,

2. d ′(x i, x l) = 0 for all objects x l with xk+1 � x l , and

3. the d ′-boundary x j of x i−1 satisfies x i−1 � x j � xk.

Exploiting Observation 4.2, for two given similarities d, d ′ : X ×X → {0, 1}, where d ′

is compatible with �, we can recursively compute the distance ‖d − d ′‖1 as follows:
let δ0 := 0 and let xk(i) be the d ′-boundary of x i. Then, ‖d − d ′‖1 = δn, where

δi := δi−1+
k(i)
∑

j=i

|d(x i, x j)− 1|+
n
∑

l=k(i)+1

d(x i, x l).(4.8)

In a similar way, we can recursively compute the minimum distance ‖d − d∗‖1

between a given similarity d : X × X → {0, 1} and any similarity d∗ : X × X → {0, 1}
compatible with �. In contrast to (4.8), the similarity d∗ is unknown here. Let
D0k := 0 for 0≤ k ≤ n. Then, as explained below, the minimum distance ‖d−d∗‖1 for
any similarity d∗ : X × X → {0, 1} compatible with � is Dnn, where for 1≤ i ≤ k ≤ n,

Dik :=
k
∑

j=i

|d(x i, x j)− 1|

︸ ︷︷ ︸

=: Aik

+
n
∑

l=k+1

d(x i, x l)

︸ ︷︷ ︸

=: Bik

+ min
i−1≤ j≤k

Di−1, j

︸ ︷︷ ︸

=: Cik

.(4.9)

Here, intuitively, the computation of Dik takes place under the assumption that xk

is the d∗-boundary of x i. The value Aik is the cost for choosing d∗(x i, x j) = 1 for
each x j with x i � x j � xk and Bik is the cost for choosing d∗(x i, x l) = 0 for each x l

with xk+1 � x l . Finally, Cik recursively yields the minimum cost Di−1, j that results
from choosing some object x j with x i−1 � x j � xk as d∗-boundary of x i−1. Now,
computing Dnn using dynamic programming enables us to prove:

Theorem 4.5. Restricted Robinson (L1, {0, 1})-Fitting is solvable in O(|X |2) time.

Proof. We compute the value Dnn bottom-up. If the value Di−1, j is known for each j
with i− 1≤ j ≤ k, then (4.9) can be used to compute Dik in O(|X |) time. This is up
to further improvement: in O(1) time, Aik is computable from Ai,k−1, Bik from Bi,k+1,
and Cik from Ci,k−1. This is exploited by Algorithm 4.2. Before Algorithm 4.2
computes Dik, it computes Di−1, j for each j with i − 1≤ j ≤ n. Then, having Aik, Bik,
and Cik precomputed, Algorithm 4.2 computes Dik in O(1) time. As the computation
of each Dik for 1≤ i ≤ k ≤ n needs O(1) time, it follows that the total running time
of Algorithm 4.2 is O(|X |2).

By remembering the arguments for which Cik obtains its minimum value, a
similarity d∗ : X × X → {0,1} compatible with the given order � and minimizing
‖d − d∗‖1 can be found within the same time bound.

38

4.4 Conclusion

Algorithm 4.2: Restricted Robinson (L1, {0, 1})-Fitting
Input: A similarity d : X × X → R, a total order x1 � . . .� xn on X , ε > 0.
Output: The minimum distance ‖d − d∗‖1 for any similarity d∗ : X × X → {0, 1}

compatible with �.
1 for k := 0 to n do D0k← Akk← Bkn← 0;
2 for i := 1 to n do
3 Cii ←min{Di−1,i−1, Di−1,i};
4 for k := i+ 1 to n do
5 Aik← Ai,k−1+ |d(x i, xk)− 1|;
6 Cik←min{Ci,k−1, Di−1,k}

7 for k := n− 1 to i do Bik← Bi,k+1+ |d(x i, xk+1)|;
8 for k := i to n do Dik← Aik + Bik + Cik

9 return Dnn;

4.4 Conclusion

Having shown that Robinson (Lp,N)-Fitting is NP-complete, it remains open
whether Robinson (Lp,R)-Fitting is NP-hard. The mixed integer program for-
mulation of Robinson (L1,R)-Fitting in Section 4.2.2 requires integer variables only
to represent a compatible order. If these variables are fixed, the remaining mixed
integer program becomes a polynomial-time solvable [Kha79, Kar84] linear pro-
gram. Hence, finding the right order is the difficult part in Robinson (L1,R)-Fitting.
To model Robinson (L1,N)-Fitting as mixed integer program, we also require the
values of the sought similarity to be integer. This suggests that Robinson (L1,R)-Fit-
ting is, in some sense, easier than Robinson (L1,N)-Fitting. However, we also find
indications of Robinson (Lp,R)-Fitting being NP-hard: typical linear programs that
minimize L1-norms can easily be modified to also minimize L∞-norms. That is, if we
find a linear program solving Robinson (L1,R)-Fitting in polynomial time, then it
is likely to be modifiable to also solve Robinson (L∞,R)-Fitting in polynomial time,
which was shown NP-hard by Chepoi et al. [CFS09]. Of course, Robinson (L1,R)-Fit-
ting could still be polynomial-time solvable without employing linear programming.

Exploiting convex programming, we have shown that Restricted Robinson
(Lp,R)-Fitting is polynomial-time solvable within arbitrary precision. It would be
interesting to find combinatorial algorithms that solve the problem faster than the
shown convex programming approach. Moreover, it is open whether Restricted
Robinson (Lp,N)-Fitting is polynomial-time solvable. The convex programming
approach is not applicable here, as subsets of Nn are generally not convex. We have
shown linear-time algorithms for the special cases Restricted Robinson (L1, {0, 1})-

39

4 Seriation

Fitting and Restricted Robinson (L∞,N)-Fitting.
We introduced Partially Restricted Robinson (Lp, M)-Fitting to help solving

seriation problems if parts of the sought order are already known. While we de-
fined Partially Restricted Robinson (Lp, M)-Fitting to receive a partial order
as input, it seems logical to study the complexity of Partially Restricted Robin-
son (Lp, M)-Fitting for different kinds of input orders. For example, one could
consider strict weak orders (also called semi-orders) as input, which are total or-
ders where “ties” are allowed. Also, the following variant of Partially Restricted
Robinson (Lp, M)-Fitting seems interesting. It is interpretable as a seriation task
where some objects have previously been put into a total order that shall now be
completed by newly-found objects without rearranging previously ordered objects.

Incremental Constrained Robinson (Lp, M)-Fitting
Input: A similarity d : X × X → M , a number ε > 0, a set Y ⊆ X , and a total

order � on Y compatible with d|Y .
Question: Is there an linear extension of � on X that is compatible with a similar-

ity d ′ : X × X → M satisfying ‖d − d ′‖p
p ≤ ε?

This problem is, in particular, interesting in the context of parameterized complexity:
if Partial Robinsonian Similarity is fixed-parameter tractable with respect to the
number of sought outliers and if Incremental Constrained Robinson (Lp, M)-
Fitting is fixed-parameter tractable with respect to the parameter |X\Y |, then the
general problem Robinson (Lp, M)-Fitting is fixed-parameter tractable with respect
to the number of outliers in the input similarity—a structural parameter. Until now,
neither the parameterized complexity of Partial Robinsonian Similarity nor of
Incremental Constrained Robinson (Lp, M)-Fitting is known. We have made
progress in this direction by showing that Partial Robinsonian {0,1}-Similari-
ty is fixed-parameter tractable. The next logical step would be trying to show
that Incremental Constrained Robinson (L1, {0,1})-Fitting is fixed-parameter
tractable with respect to the parameter |X\Y |.

The hardness and tractability results presented in this chapter are summarized in
Table 4.1 on the following page.

40

Pr
ob

le
m

C
om

pl
ex

it
y

Pa
ra

m
et

er
iz

ed
C

om
pl

ex
it

y

Pa
r
t
ia
l

R
o
b
in
so
n
ia
n
{0

,1
}-

Si
m
il
a
r
it
y

N
P-

co
m

pl
et

e
O
((

14
k
+

14
)k
+

1
k
|X
|6
)

Pa
r
t
ia
l

R
o
b
in
so
n
ia
n

Si
m
il
a
r
it
y

N
P-

co
m

pl
et

e
op

en

R
o
b
in
so
n
(L

1
,{

0,
1}
)-

Fi
t
t
in
g

N
P-

co
m

pl
et

e
op

en

Pa
r
t
ia
ll
y

R
es
t
r
ic
t
ed

at
le

as
t

as
ha

rd
as

O
(2
∆
)

in
st

an
ce

s
of

R
e
st
r
ic
t
e
d

R
o
b
in
so
n
(L

p,
M
)-

Fi
t
t
in
g

R
o
b
in
so
n
(L

p
,M
)-

Fi
t
t
in
g

R
o
b
in
so
n
(L

p
,M
)-

Fi
t
t
in
g

a

R
o
b
in
so
n
(L

p,
N
)-

Fi
t
t
in
g

N
P-

co
m

pl
et

e
op

en

R
o
b
in
so
n
(L

p,
R
)-

Fi
t
t
in
g

op
en

op
en

R
o
b
in
so
n
(L
∞

,R
)-

Fi
t
t
in
g

N
P-

co
m

pl
et

e
ev

en
no

t
FP

T
w

it
h

pa
ra

-
fo

r
ε
=

3
[C

FS
09
]

m
et

er
ε

or
P
=

N
P

R
es
t
r
ic
t
ed

R
o
b
in
so
n
(L

p,
R
)-

Fi
t
t
in
g

po
ly

n
om

ia
lt

im
eb

R
es
t
r
ic
t
ed

R
o
b
in
so
n
(L
∞

,R
)-

Fi
t
t
in
g

de
ci

si
on

:
li

n
ea

r
ti

m
e,

op
ti

m
i-

za
ti

on
c :

O
(|

X
|2

lo
g
‖d
‖ ∞
ε̄−

1)

R
es
t
r
ic
t
ed

R
o
b
in
so
n
(L

1
,{

0,
1}
)-

Fi
t
t
in
g

li
n

ea
r

ti
m

e

a H
er

e,
∆

is
th

e
nu

m
be

r
of

in
co

m
pa

ra
bl

e
pa

ir
s

in
th

e
gi

ve
n

pa
rt

ia
lo

rd
er

.
b Fo

r
op

ti
m

iz
at

io
n

w
it

hi
n

ar
bi

tr
ar

y
pr

ec
is

io
n.

c H
er

e,
ε̄

is
th

e
re

qu
ir

ed
pr

ec
is

io
n.

Pr
ev

io
us

ly
sh

ow
n

to
be

po
ly

no
m

ia
l-

ti
m

e
so

lv
ab

le
by

C
he

po
ie

t
al

.[
C

FS
09
].

Ta
bl

e
4.

1:
Su

m
m

ar
y

of
co

m
pl

ex
it

y
an

d
tr

ac
ta

bi
lit

y
re

su
lt

s.
R

es
ul

ts
ob

ta
in

ed
in

th
is

w
or

k
ar

e
sh

ow
n

in
bo

ld
.

41

5 Unit Interval Vertex Deletion

This chapter presents fixed-parameter algorithms for the following problem:

Unit Interval Vertex Deletion
Input: A graph G = (V, E).
Parameter: A natural number k.
Question: Is G− S a unit interval graph for some vertex set S ⊆ V with |S| ≤ k?

In the following, we say that S is a unit interval vertex deletion set. We open
with a brief summary of the main problems that emerge in the development of
fixed-parameter algorithms for Unit Interval Vertex Deletion.

In Section 3.1, we have seen a characterization of unit interval graphs by in-
finitely many forbidden induced subgraphs [Weg67, BLS99], which are illustrated in
Figure 5.1. If the number of vertices in the forbidden induced subgraphs for unit in-
terval graphs was bounded, then we could apply a general result due to Cai [Cai96],
which shows that a bounded search tree algorithm as discussed in Section 2.4 would
immediately yield a simple fixed-parameter algorithm for Unit Interval Vertex
Deletion. Unfortunately, as illustrated in Figure 5.1, holes of arbitrary lengths are
forbidden induced subgraphs for unit interval graphs. Marx [Mar09] has shown a
fixed-parameter algorithm for the related problem of making graphs hole-free:

Chordal Vertex Deletion
Input: A graph G = (V, E).
Parameter: A natural number k.
Question: Is G− S hole-free for some vertex set S ⊆ V with |S| ≤ k?

Section 5.1 shows that Marx’ algorithm [Mar09] for Chordal Vertex Deletion
can be easily extended to solve Unit Interval Vertex Deletion. However, Marx’
algorithm relies on solving Chordal Vertex Deletion on a tree decomposition of
width Ω(k4) in the worst case, making his algorithm mainly a classification result.
Circumventing Marx’ algorithm [Mar09], whose total running time is not analyzed
in Marx’ work, this chapter shows:

42

5.1 Fixed-Parameter Tractability, Stronger NP-Hardness Results

(a) Claw (b) Net (c) Tent (d) Holes

Figure 5.1: The (infinitely many) forbidden induced subgraphs for unit interval
graphs. Holes are induced cycles of arbitrary length greater than three.

Theorem 5.1. Unit Interval Vertex Deletion can be solved in O((14k+ 14)k+1 ·
kn6) time.

The corresponding fixed-parameter algorithm developed in this chapter exploits
properties specific to unit interval graphs to gain an exponential speedup compared
to Marx [Mar09]. It has applications in the social sciences, specifically in the
measurement of indifference as discussed in Chapter 1 and by Roberts [Rob78].

In Section 5.1, we show how Marx’ algorithm for Chordal Vertex Deletion can
be used to obtain a fixed-parameter algorithm for Unit Interval Vertex Deletion.
Moreover, it is shown that Unit Interval Vertex Deletion is NP-hard even on
{claw, net, tent}-free graphs, which, in this case, is equivalent to Chordal Vertex
Deletion. The remainder of the chapter presents our fixed-parameter algorithm for
Unit Interval Vertex Deletion. It is first outlined in Section 5.2. Then, Section 5.3
presents the details and thus proves Theorem 5.1.

5.1 Fixed-Parameter Tractability and a Stronger
NP-Hardness Result

This section first shows that Unit Interval Vertex Deletion is fixed-parameter
tractable. We exploit the fixed-parameter tractability of Chordal Vertex Dele-
tion [Mar09]. Moreover, we prove that Unit Interval Vertex Deletion is NP-com-
plete even on {claw, net, tent}-free graphs. In this case, Unit Interval Vertex
Deletion is equivalent to Chordal Vertex Deletion.

Theorem 5.2. Unit Interval Vertex Deletion is fixed-parameter tractable.

Proof. A graph is a unit interval graph if and only if it is {claw, net, tent, hole}-
free [Weg67, Rob78]. These forbidden induced subgraphs are shown in Figure 5.1.
Marx [Mar09] has presented a fixed-parameter algorithm for Chordal Vertex
Deletion. We turn this into a fixed-parameter algorithm for Unit Interval Vertex

43

5 Unit Interval Vertex Deletion

(a) Input graph G

A

B

(b) Output graph G′

Figure 5.2: Illustration of the construction made in the proof of Theorem 5.3. The
hatched circles represent cliques that are adjacent to all explicitly shown vertices.
The dashed edges in G′ are the edges of G’s complement graph. Observe that any
two vertices that are incident to the same edge in G are part of the same hole in G′.

Deletion as follows: given a Unit Interval Vertex Deletion instance (G, k), first
enumerate all minimal vertex sets S with |S| ≤ k such that G − S is {claw, net, tent}-
free. We can, at most k times, choose one of at most six vertices of a claw, net, or
tent for inclusion in such a set S. It follows that there are at most 6k such sets, since
choosing a vertex that is not part of a claw, net, or tent would not result in a minimal
set. Because we can find a claw, net, or tent in O(n6) time, we can enumerate these
sets in O(6kn6) time using a simple search tree algorithm as discussed in Section 2.4.

For each minimal vertex set S that makes G− S {claw, net, tent}-free, apply the
fixed-parameter algorithm for Chordal Vertex Deletion to the graph G− S to test
if it can be made hole-free by at most k− |S| vertex deletions. It is not hard to verify
that this is correct: because every unit interval vertex deletion set S for a graph G
makes G−S also {claw, net, tent}-free, we can partition S into a minimal set S′ such
that G− S′ is {claw, net, tent}-free and into a set S∗ such that G− (S′ ∪ S∗) = G− S
is additionally hole-free and, therefore, a unit interval graph.

We now prove that Unit Interval Vertex Deletion is NP-complete even on {claw,
net, tent}-free graphs. Note that on these graphs, Chordal Vertex Deletion and
Unit Interval Vertex Deletion are the same problem, because a {claw, net, tent}-
free graph G is a unit interval graph if and only if G is hole-free [Weg67, Rob78]
and because every induced subgraph of G is also {claw, net, tent}-free.

Theorem 5.3. Chordal Vertex Deletion is NP-hard on {claw, net, tent}-free graphs.

Proof. The problem is obviously contained in NP. To show NP-hardness, we employ a
reduction from Vertex Cover, which is NP-complete even on C3-free graphs [GJS76].

44

5.2 Outline of a New Fixed-Parameter Algorithm

Vertex Cover
Input: A graph G and a natural number k.
Question: Is there a set S with |S| ≤ k such that G− S has no edges?

First, we describe the reduction, then we prove its correctness. The construction
made in the following is illustrated in Figure 5.2.

Let (G, k) be a Vertex Cover instance, where G is C3-free. We construct an
instance (G′, k) for Chordal Vertex Deletion as follows: let G′ := G, where G is
the complement graph of G. Add to G′ two disjoint cliques A and B, each containing
k+ 1 vertices, and make every vertex in A and every vertex in B adjacent to every
vertex of G. Because each of claw, net, and tent contains an independent set of
size three, the constructed graph G′ is {claw, net, tent}-free: since G is C3-free, the
complement G does not contain an independent set of size three. Moreover, there
is no independent set of size three in G′, since the vertices in the cliques A and B
are adjacent to every vertex of G. It remains to show that (G, k) is a yes-instance of
Vertex Cover if and only if (G′, k) is a yes-instance of Chordal Vertex Deletion.

If (G, k) is a yes-instance of Vertex Cover, then there is a set S of size k that
makes G − S edgeless. As a consequence, the complement of G − S is a clique C .
Thus, G′ − S contains three cliques A, B, and C , where every vertex of A and B is
adjacent to every vertex in C by construction of G′. The graph G′− S is obviously
hole-free. Because |S| ≤ k, (G′, k) is a yes-instance of Chordal Vertex Deletion.

If (G′, k) is a yes-instance of Chordal Vertex Deletion, then there is a set S with
|S| ≤ k that makes G′− S hole-free. Now, for the sake of contradiction, assume that
there is an edge {u, v} in G − S, and, therefore, no edge between u and v in G′ by
construction of G′. Because A and B each contain k+ 1 vertices and |S| ≤ k, there
are vertices a ∈ A\S and b ∈ B\S; the tuple (a, u, v, b) forms a hole in G′− S. This
contradicts G − S being hole-free. Hence, S is a set of size at most k that makes
G− S edgeless and (G, k) is a yes-instance of Vertex Cover.

5.2 Outline of a New Fixed-Parameter Algorithm

This section outlines a novel fixed-parameter algorithm for Unit Interval Vertex
Deletion. We exploit the iterative compression technique by Reed et al. [RSV04,
GMN09] to obtain a fixed-parameter algorithm for Unit Interval Vertex Deletion
from the following, and as we will see, simpler problem:

Disjoint Unit Interval Vertex Deletion
Input: A graph G and a unit interval vertex deletion set X for G.
Parameter: |X |
Output: A unit interval vertex deletion set S with |S|< |X | and S ∩ X = ; or “no”

if no such set exists.

45

5 Unit Interval Vertex Deletion

Like Unit Interval Vertex Deletion, the Disjoint Unit Interval Vertex Deletion
problem is NP-complete [FGMN09]. In contrast to a fixed-parameter algorithm that
directly solves Unit Interval Vertex Deletion, a fixed-parameter algorithm for
Disjoint Unit Interval Vertex Deletion can exploit the structural information that
G− X is a unit interval graph.

In Section 5.2.1, we show how a fixed-parameter algorithm for Disjoint Unit
Interval Vertex Deletion can be extended to a fixed-parameter algorithm for Unit
Interval Vertex Deletion exploiting the iterative compression technique [RSV04,
GMN09]. This will show that Theorem 5.1 is implied by the following theorem:

Theorem 5.4. Disjoint Unit Interval Vertex Deletion can be solved in O((14|X |−
1)|X |−1 · |X |n5) time.

Then, it remains to prove Theorem 5.4. To this end, we develop a bounded search
tree algorithm for Disjoint Unit Interval Vertex Deletion, which is outlined in
Section 5.2.2. Its details are given in Section 5.3.

5.2.1 Iterative Compression

There are many problems where the destruction of cycles in graphs poses a signifi-
cant subproblem. To name only two examples: in Feedback Vertex Set, one tries
to transform a graph into a forest by a minimum number of vertex deletions; in
Chordal Vertex Deletion, one tries to make a graph chordal, that is, hole-free.
Fixed-parameter algorithms for such problems often employ the iterative compres-
sion technique [RSV04, GGH+06, DFL+07, GMN09]. Similarly, we successfully apply
iterative compression to Unit Interval Vertex Deletion, which also involves the
destruction of holes (see Figure 5.1).

This section shows how the iterative compression technique allows us to use a
fixed-parameter algorithm for Disjoint Unit Interval Vertex Deletion to solve
Unit Interval Vertex Deletion. More introductory examples on the technique are
given in a survey by Guo et al. [GMN09].

The core of the iterative compression technique is a so-called compression routine:
Given a graph G, a natural number k, and a unit interval vertex deletion set X
with |X | ≤ k+ 1 for G, the compression routine compress(G, X , k) outputs a unit
interval vertex deletion set S for G with |S| ≤ k if such a set exists, or outputs “no”
otherwise. We design a compression routine using a fixed-parameter algorithm
for Disjoint Unit Interval Vertex Deletion, exploiting the fact that G − X is a
unit interval graph. Given such a compression routine, Algorithm 5.1 solves Unit
Interval Vertex Deletion.

46

5.2 Outline of a New Fixed-Parameter Algorithm

Algorithm 5.1: Iterative Compression
Input: A graph G and its vertices v1, . . . , vn in an arbitrary order, k ∈ N.
Output: A unit interval vertex deletion set S for G with |S| ≤ k or “no”.

1 S0← ;;
2 for i := 1 to n do
3 Si ← compress(G[{v1, . . . , vi}], Si−1 ∪ {vi}, k);
4 if Si = “no” then return “no”

5 return Sn

Correctness of Algorithm 5.1. We first show that if none of the Si is “no”, then
Sn is a unit interval vertex deletion set of size at most k for G. Observe that the
compression routine never outputs unit interval vertex deletion sets larger than k.
Thus, whenever line 3 of Algorithm 5.1 is reached, then Si−1 is a unit interval vertex
deletion set for G[{v1, . . . , vi−1}] of size at most k. It follows that the set Si−1∪{vi} is
a unit interval vertex deletion set for the graph G[{v1, . . . , vi}] of size at most k+ 1,
which can then be compressed into a unit interval vertex deletion set Si of size at
most k. We conclude that if none of the Si is “no”, then Sn is a unit interval vertex
deletion set for G of size at most k.

It remains to show that if one of the Si is “no”, then G does not allow for a unit
interval vertex deletion set of size at most k. Observe that if G allows for a unit
interval vertex deletion set of size at most k, then every induced subgraph of G also
does. In contraposition, if G[{v1, . . . , vi}] does not allow for a unit interval vertex
deletion set of size at most k (Si = “no”) then neither does G.

Compression Routine. We now present a compression routine for Algorithm 5.1.
In this compression routine, we exploit an algorithm for Disjoint Unit Interval
Vertex Deletion. Recall that the task of the compression routine is, given a graph G,
a natural number k, and a unit interval vertex deletion set X with |X | ≤ k+ 1, to
find a unit interval vertex deletion set S for G with |S| ≤ k. If |X | ≤ k, then the
compression routine can return X unchanged. Thus, we assume that |X | = k+1 and
arrive at the task of finding a Unit Interval Vertex Deletion S for G with |S|< |X |.

We partition the output unit interval vertex deletion set S into a set S\X of vertices
that are not present in the input unit interval vertex deletion set X and into a set S∩X
of vertices that are present in X . Using this partition, we reformulate the task of the
compression routine: find a set S with |S|< |X | such that G−S = G−((S∩X)∪(S\X))
is a unit interval graph. This, in turn, is equivalent to S\X being a unit interval
vertex deletion set for G− (S ∩ X) with |S\X |< |X\S|. In the following, we exploit
this equivalence in a compression routine and analyze its running time.

47

5 Unit Interval Vertex Deletion

We find a unit interval vertex deletion set S with |S| < |X | as follows: given X ,
try all possibilities to choose the set X ′ := X\S from X . Then, it remains to find
a unit interval vertex deletion set that is disjoint from X ′ and smaller than |X ′|
in the graph G′ := G − (S ∩ X). That is, we solve the Disjoint Unit Interval
Vertex Deletion instance (G′, X ′). Because |X ′| ≤ |X | and because G′ is an induced
subgraph of G, Theorem 5.4 implies that this works in O((14|X | − 1)|X

′| · |X |n5) time,
where n is the number of vertices of G. We can compute G′ in O(n+m) time. For
brevity, let a := |X |n5 and b := 14|X | − 1. There are

�|X |
k′
�

=
�k+1

k′
�

possibilities to
choose X ′ with |X ′| = k′ from X . Thus, the total running time of our compression
routine is (up to a constant factor) upper-bounded by

a ·
k+1
∑

k′=0

�

k+ 1

k′

�

bk′ = a · (1+ b)k+1 = (14|X |)k+1 · |X |n5.

Theorem 5.4 implies Theorem 5.1. It is now easily shown that Unit Interval
Vertex Deletion is solvable in O((14k+ 14)k+1 · kn6) time. To this end, we analyze
the running time of Algorithm 5.1: the for-loop initiated in line 2 of Algorithm 5.1
runs at most n times. In each run, compress(G, X) takes O((14|X |)k+1 · |X |n5) time.
In the call to compress in line 3, computing the induced subgraph of G takes
O(n+m) time and computing Si−1 ∪ {vi} works in constant time. It follows that
each of the n iterations costs O((14|X |)k+1 · |X |n5) time. Because |X | ≤ k+ 1 holds
in each iteration, this establishes Theorem 5.1.

In the remainder of this chapter, we focus on solving Disjoint Unit Interval
Vertex Deletion in O((14|X | − 1)|X |−1 · |X |n5) time, thus proving Theorem 5.4 and
Theorem 5.1. The following subsection outlines an algorithm to solve Disjoint Unit
Interval Vertex Deletion. In Section 5.3, we describe the outlined steps in detail.

5.2.2 Disjoint Unit Interval Vertex Deletion

This subsection outlines an algorithm for Disjoint Unit Interval Vertex Deletion.
Given a graph G and a unit interval vertex deletion set X for G, we search for a
vertex set S with S ∩ X = ; and |S|< |X | such that deleting the vertices in S from G
destroys all claws, nets, tents, and holes (shown in Figure 5.1).

The algorithm roughly works as follows: first, similarly to the proof of Theorem 5.2,
enumerate all minimal vertex sets of size at most |X | − 1 whose deletion transforms
a graph into a {claw, net, tent, C4, C5, C6}-free graph, henceforth called almost unit
interval graph. We obtain a family of almost unit interval graphs. For each of these,
it remains to find a minimum vertex set whose removal destroys all holes of length
greater than six to transform it into a unit interval graph. If the size of this vertex

48

5.2 Outline of a New Fixed-Parameter Algorithm

tube inner verticesjunction

G− X

X

Figure 5.3: A hole that visits the maximal cliques of G − X , which are indicated by
circles. Hatched circles show junctions. The vertices of G− X are shown from left
to right in a bicompatible elimination order. A maximal set of consecutive white
cliques forms a tube. As illustrated, tubes may contain vertices of junctions. For the
right tube, we indicate the inner vertices.

set together with the number of vertex deletions needed to transform a graph into
an almost unit interval graph is at most |X | − 1, then we have found a solution.

To destroy all holes in an almost unit interval graph G, we show that each
hole has a set of 14|X | − 1 vertices of which at least one vertex can be assumed
to be in a minimum unit interval vertex deletion set. This allows us to use a
bounded search tree algorithm that, for each hole H in G, recursively branches
into 14|X | − 1 possibilities to destroy H. Because at most |X | − 1 vertices may be
deleted from G to transform it into a unit interval graph, the recursion depth is
bounded by |X | − 1. The corresponding search tree (also refer to Section 2.4) has
O((14|X |−1)|X |−1) nodes, which will result in the running time stated in Theorem 5.4.

To find this set of 14|X | − 1 vertices for each hole in G, we exploit that G − X
is a unit interval graph. Unit interval graphs allow for a linear-time computable
bicompatible elimination order of their vertices [PD03]:

Definition 5.1. Let G = (V, E) be a graph. A total order � on V is a bicompatible
elimination order for G if for each vertex v ∈ V , the sets {w ∈ N(v) | w � v} and {w ∈
N(v) | v � w} induce cliques in G.

Without loss of generality, we require that the vertices of a connected component
of G form a segment of �.

We will see that, with respect to a bicompatible elimination order, G− X forms a
sequence of maximal cliques such that the vertices of each maximal clique form a
segment of the bicompatible elimination order. Figure 5.3 illustrates this together
with the following classification of the maximal cliques of G− X :

1. A junction is a maximal clique in G− X containing neighbors of vertices in X .

49

5 Unit Interval Vertex Deletion

2. With respect to a bicompatible elimination order � for G − X , a tube is a
maximal set of maximal cliques of G − X that are not junctions and whose
vertices form a segment of �.

We say that a vertex is contained in a tube T if it is contained in a maximal clique
of T . A hole visits a junction (or tube) if it contains a vertex of a junction (or tube).
Vertices of a tube that are not in junctions are inner vertices.

Now, assume that there is a hole H in an almost unit interval graph G as illus-
trated in Figure 5.3. We show 14|X | − 1 possibilities to destroy H, of which one
is optimal. Each vertex of H in G − X is contained in a junction or tube (or both).
Section 5.3.1 shows that H contains at most 12|X | vertices in junctions of G − X .
Then, Section 5.3.2 shows that H contains inner vertices of at most 2|X | − 1 tubes.
Additionally, Section 5.3.2 shows that there is a minimum unit interval vertex dele-
tion set that contains vertices of H in junctions or a polynomial-time computable
vertex of H in one of the 2|X | − 1 tubes that it visits. Section 5.3.3 finally presents
a bounded search tree algorithm that repeatedly searches for a hole H in G and
branches into the following 14|X | − 1 possibilities to destroy H:

1. delete one of the 12|X | vertices of H in junctions, or

2. delete an optimal, polynomial-time computable vertex of H in one of the
2|X | − 1 tubes whose inner vertices are visited by H.

The next section will give the details of these steps; we show an algorithm for
Disjoint Unit Interval Vertex Deletion running in O((14|X |−1)|X |−1 · |X |n5) time.
This proves Theorem 5.1.

5.3 Algorithmic Details

This section presents the details of the Disjoint Unit Interval Vertex Deletion
algorithm. Given a graph G and a unit interval vertex deletion set X for G, we search
for a unit interval vertex deletion set S for G with |S|< |X | and S ∩ X = ;. Following
the outline in Section 5.2.2, we first transform the input graph G into a family of
almost unit interval graphs. To this end, the following branching rule (starting with
an empty set S) is employed:

Branching Rule 5.1. If G− S contains a forbidden induced subgraph induced by a
vertex set F with |F | ≤ 6, then recursively branch into all possibilities of adding a
vertex v ∈ F\X to S.

50

5.3 Algorithmic Details

v

Figure 5.4: If a cycle contains three
vertices of a clique, it cannot be a hole
because it has a chord.

Figure 5.5: The neighborhood of v
is covered by two cliques, shown as
circles.

The algorithm stops branching if |S| ≥ |X | − 1. If in this case G − S still contains a
forbidden induced subgraph, then S cannot be part of a unit interval vertex deletion
set smaller than X and disjoint from X . Since each forbidden induced subgraph in G
contains a vertex in X (otherwise, X would not be a unit interval vertex deletion set),
Branching Rule 5.1 branches into at most five cases. Thus, we obtain O(5|X |−1) sets S
such that G−S is an almost unit interval graph. In the following sections, it remains
to transform these almost unit interval graphs into unit interval graphs.

5.3.1 Bounding the Number of Vertices in Junctions

Following the outline in Section 5.2.2, this subsection shows that, for an almost unit
interval graph G and a unit interval vertex deletion set X for G, a hole in G contains
at most 12|X | vertices in junctions of G− X . Before proceeding in this respect, recall
that a junction is a maximal clique in G− X that contains neighbors of vertices in X
(see Figure 5.3). The goal of this subsection is proving:

Lemma 5.1. Let X be a unit interval vertex deletion set for an almost unit interval
graph G. A hole in G contains at most 12|X | vertices in junctions of G− X .

In the following, we provide the necessary observations to prove Lemma 5.1. First,
observe that a cycle that contains more than two vertices of a clique has a chord.
This is illustrated in Figure 5.4. As a result, no hole contains more than two vertices
from a single clique.

In the following observation, we exploit that G is an almost unit interval graph.
We say that a vertex subset of a graph G can be covered by two cliques if it is the
union of two vertex sets which induce cliques in G. We assume that the cliques
that cover a vertex subset of G only contain vertices of that vertex subset. The
observation is illustrated in Figure 5.5.

51

5 Unit Interval Vertex Deletion

v j v j′ vi v j′′ vk

(a) The vertices v j � v j′ �
v j′′ form the induced path
(v j′ , v j , v j′′), in wrong order.

v1 v2 v3 v4 v5

(b) A maximal clique induced
by the non-consecutive ver-
tices v1, v2, v4, and v5.

Figure 5.6: The vertex orders from left to right are not bicompatible elimination
orders, as they violate Observation 5.2.

Observation 5.1. If a connected almost unit interval graph G contains a hole, then
the neighborhood of each vertex in G can be covered by two cliques.

Proof. Because the almost unit interval graph G contains no induced claw, net, tent,
C4, C5, or C6, it contains a hole with more than six vertices. Such a hole contains an
independent set of size three. We now apply a result due to Fouquet [Fou93]:

In a connected claw-free graph containing an independent set of size
three, every vertex v satisfies exactly one of the following properties:

1. N(v) can be covered by two cliques or

2. N(v) contains an induced C5.

Because G contains no induced C5, the observation follows immediately.

From this observation, one can conclude that if an almost unit interval graph G
contains a hole, then the neighborhood of a unit interval vertex deletion set X
in G − X can be covered by 2|X | cliques. Note that these cliques are not necessarily
maximal in G − X . Thus, Observation 5.1 does not yield an upper bound on the
number of junctions of G− X .

In addition to Observation 5.1, we exploit G−X being a unit interval graph to prove
Lemma 5.1. Unit interval graphs are equivalent to proper interval graphs [Rob69,
Rob78]. It follows that a graph is a unit interval graph if and only if it allows for
a linear-time computable bicompatible elimination order [PD03], defined in Defi-
nition 5.1. The following observation says that maximal cliques of a unit interval
graph form segments of any bicompatible elimination order and that vertices on
induced paths occur in the same (or inverse) order as in any bicompatible elimina-
tion order. It immediately follows that the vertex orders shown in Figure 5.6 are not
bicompatible elimination orders.

52

5.3 Algorithmic Details

Observation 5.2. Let v1 � v2 � . . . � vn be a bicompatible elimination order for a
connected unit interval graph G.

(1) If there is an induced path P = (vi, . . . , vk) with vi � vk, then every vertex v j on P
satisfies vi � v j � vk.

(2) If vi � vk and there is an edge between vi and vk, then the segment [vi, vk] induces
a clique in G. In particular, maximal cliques of G form segments.

Proof. We prove the two listed statements independently. To show (1), for the
purpose of contradiction, assume that P = (vi, . . . , v j, . . . , vk) is an induced path with
v j � vi � vk (the case vi � vk � v j can be proven analogously) such that v j is the
minimum vertex with respect to � that appears between vi and vk on P. Figure 5.6a
illustrates this arrangement. Because there are induced subpaths of P from v j to
both vi and vk, the vertex v j has two distinct neighbors v j′ and v j′′ on P. Because v j

is the minimum vertex with respect to � that appears between vi and vk on P, it
holds that v j � v j′ and v j � v j′′ . The vertices v j′ and v j′′ , which both are succeeding
neighbors of v j, are adjacent by Definition 5.1. This contradicts P being induced.

Prior to showing (2), we show that there is an edge between a vertex vi and its
direct successor vi+1 for i ∈ {1, . . . , n− 1}. By assumption, the graph G is connected.
This implies the existence of a shortest (and hence, induced) path from vi to vi+1.
By (1), this path can neither contain a predecessor of vi nor a successor of vi+1.
Because vi+1 directly succeeds vi in�, vi and vi+1 are the only vertices on the shortest
path from vi to vi+1. Hence, they are adjacent.

We now show (2). Let vi � vk and assume that there is an edge between vi and vk.
We have already shown that vi is adjacent to its direct successor vi+1. Because vi+1

and vk are succeeding neighbors of vi, the vertices vi, vi+1, and vk form a clique by
Definition 5.1. Inductively, it follows that all vertices v j with vi � v j � vk are adjacent
to vk. By Definition 5.1, these vertices form a clique together with vk because they
are preceding neighbors of vk in �. Finally, a maximal clique in G contains an edge
from its minimum vertex to its maximum vertex and, hence, forms a segment.

To prove Lemma 5.1, we finally need the following definition, which is illustrated in
Figure 5.7, and its subsequent observation.

Definition 5.2. Let G be a unit interval graph with a bicompatible elimination
order � and let C be a clique of G. We define S(C) to be the set of vertices of all
maximal cliques in G containing vertices of C .

Let cmin (and cmax) be the minimum (or maximum, respectively) elements of S(C)
with respect to �. We define Smin(C) (or Smax(C)) to be the vertex set of the
(uniquely determined) maximal clique in G that contains cmin (or cmax, respectively)
and any vertex of C .

53

5 Unit Interval Vertex Deletion

cmin cmax

S(C)

Smin(C) Smax(C)

C

Figure 5.7: Illustration for Definition 5.2. The vertices are shown from left to right
in a bicompatible elimination order. The hatched clique is C .

Observation 5.3. Let G be a unit interval graph with a bicompatible elimination or-
der �. For every clique C of G and the vertex set C ′ of any maximal clique containing C,
it holds that S(C) = C ′ ∪ Smin(C)∪ Smax(C). Moreover, S(C) is a segment.

Proof. By Definition 5.2, it holds that C ′ ∪ Smin(C)∪ Smax(C)⊆ S(C). Now, let cmin

(and cmax) be the minimum (or maximum, respectively) vertex of S(C) with respect
to �. Obviously, S(C) ⊆ [cmin, cmax]. By Observation 5.2(2), the sets C ′, Smin(C),
and Smax(C) form segments, because they induce maximal cliques. Since Smin(C)
and Smax(C) contain vertices of C , both segments intersect with C ′. It follows that
C ′ ∪ Smin(C)∪ Smax(C) is the union of intersecting segments and, hence, a segment.
By Definition 5.2, C ′ ∪ Smin(C) ∪ Smax(C) contains cmin and cmax. It follows that
S(C)⊆ [cmin, cmax]⊆ C ′ ∪ Smin(C)∪ Smax(C).

We have now collected the necessary observations to prove Lemma 5.1, which for an
almost unit interval graph G and a unit interval vertex deletion set X shows that a
hole contains at most 12|X | vertices in junctions of G− X .

Proof of Lemma 5.1. By Observation 5.1, the neighborhood of X in G − X can be
covered by a set C of 2|X | cliques. By Definition 5.2, the vertices of all junctions
containing vertices of a clique C ∈ C are in S(C). We show that a hole contains at
most six vertices in S(C) and, thus, in all junctions containing vertices of C . A hole
contains at most two vertices in the vertex set C ′ of any maximal clique containing C ,
at most two vertices of the clique induced by Smin(C), and at most two vertices in the
clique induced by Smax(C). By Observation 5.3, one has S(C) = Smin(C)∪Smax(C)∪C ′.
Hence, a hole contains at most six vertices in S(C). This worst-case scenario is
illustrated in Figure 5.8.

A hole contains at most six vertices in all junctions containing vertices of C .
From |C| ≤ 2|X |, it follows that a hole contains at most 12|X | vertices in junctions
of G− X .

54

5.3 Algorithmic Details

G− X

X

C

S(C)

Smin(C) Smax(C)

v

Figure 5.8: The neighborhood of v induces the two-vertex hatched clique C . The
hole drawn in bold edges contains six vertices in junctions containing vertices of C .

5.3.2 Finding Optimal Solutions in Tubes

For an almost unit interval graph G and a unit interval vertex deletion set X ,
Lemma 5.1 showed that a hole H in G contains at most 12|X | vertices in junctions
of G − X . Following the outline in Section 5.2.2, this subsection shows that H visits
inner vertices of at most 2|X | − 1 tubes in G − X . Moreover, we show that there is
a minimum unit interval vertex deletion set containing at least one vertex of H in
junctions or a polynomial-time computable vertex of H in one of the 2|X | − 1 tubes
whose inner vertices are visited by H. As discussed in the outline in Section 5.2.2,
this allows us to solve Disjoint Unit Interval Vertex Deletion by trying at most
14|X | − 1 possibilities to destroy any hole H in G.

Recall that a tube with respect to a bicompatible elimination order � of G − X
is a maximal set of maximal cliques of G − X that are not junctions and whose
vertices form a segment of �. Moreover, recall that inner vertices of a tube are those
vertices that are not contained in junctions. Before stating the first main result of
this subsection, we show the following observation, which implies that if two tubes
contain a common vertex, then these tubes are equal.

Observation 5.4. Let X be a unit interval vertex deletion set for a graph G and let �
be a bicompatible elimination order for G − X . Let T1 be a tube in G − X and let T2

be a set of maximal cliques of G− X that are not junctions and whose vertices form a
segment of �. If T1 and T2 contain a common vertex, then T2 ⊆ T1.

Proof. The set T1 ∪ T2 only contains maximal cliques of G− X that are not junctions.
Moreover, the cliques in T1 form a segment and the cliques in T2 form a segment.
Both segments contain a common vertex. Hence, the cliques in T1 ∪ T2 form a
segment. Because T1 is a maximal set of maximal cliques that are not junctions and
whose vertices form a segment, T1 = T1 ∪ T2, that is, T2 ⊆ T1.

We now state the first of the two main results of this subsection.

55

5 Unit Interval Vertex Deletion

S(C1) S(C2)

T

C1 C2

X

G− Xv jvi vk

Figure 5.9: A hole (bold edges) visiting a tube T . The vertices of G− X are shown
from left to right in a bicompatible elimination order. The hatched cliques are
neighborhoods of vertices in X . Observe that all vertices in the segments S(C1)
and S(C2) are contained in junctions. The tube T contains the single inner vertex v j.

Lemma 5.2. Let X be a unit interval vertex deletion set for an almost unit interval
graph G. A hole in G contains inner vertices of at most 2|X | − 1 tubes with respect to a
bicompatible elimination order � for G− X .

Proof. By Observation 5.1, the neighborhood of X can be covered by a set C of
2|X | cliques in G − X . Let T be the set of tubes that contain inner vertices visited
by H. Recall from Definition 5.2 that S(C) is the set containing the vertices of all
maximal cliques that contain vertices of C . Observe that for a clique C ∈ C, all
vertices in S(C) are contained in junctions, as Observation 5.3 shows that a vertex
in S(C) is contained in the junction Smin(C), the junction Smax(C), or in a junction
containing C . Moreover, Observation 5.3 shows that S(C) is a segment.

The proof now works as follows (see Figure 5.9 for illustrations): first, we show
that each tube T ∈ T contains three vertices vi � v j � vk such that there are two
cliques C1, C2 ∈ C with vi ∈ S(C1), vk ∈ S(C2) and v j /∈ S(C1) ∪ S(C2). Because
S(C1) and S(C2) are segments, this implies that all vertices in S(C1) precede all
vertices of S(C2) in �. Then, we show that, for each clique C ∈ C, there is at most
one tube T containing vertices vi � v j with vi ∈ S(C) and v j /∈ S(C). This already
yields |T | ≤ |C|. Now, observe that there is a clique C1 ∈ C for which there is no
clique C2 ∈ C such that all vertices in S(C1) precede the vertices in S(C2) (the “last”
clique). This yields |T | ≤ |C| − 1≤ 2|X | − 1.

Let T ∈ T and let vi, with respect to �, be the minimum vertex of H in T . By
definition of T , the hole H contains an inner vertex v j of the tube T . By choice
of vi, it holds that vi � v j. Moreover, we have v j /∈ S(C) for all cliques C ∈ C since
all vertices in S(C) are in junctions and v j is an inner vertex. All neighbors of vi

are in G − X , as vi is a vertex of the tube T . By Observation 5.2(1), this implies
that vi has, with respect to �, a preceding neighbor v′i in H. Since v′i and vi are
neighbors, there is a maximal clique containing vi and v′i . This maximal clique is

56

5.3 Algorithmic Details

inner vertices

tube

G− X

X

vi vk

Figure 5.10: A hole illustrating Definition 5.3. Circles represent maximal cliques.
The hatched cliques are junctions. The T -boundary for the shown hole is (vi, vk).

a junction, because v′i is not in T by choice of vi. This implies the existence of a
clique C ∈ C with vi ∈ S(C). Analogously, we find a clique C ∈ C for which S(C)
contains, with respect to �, the maximum vertex vk of H in T . It follows that we
find cliques C1, C2 ∈ C such that vi ∈ S(C1), vk ∈ S(C2) and v j /∈ S(C1)∪ S(C2). By
choice of vi and vk, it holds that vi � v j � vk.

It remains to show that for a clique C ∈ C, there is at most one tube T ∈ T contain-
ing vertices vi � v j such that vi ∈ S(C) and v j /∈ S(C). Assume that there are two
such tubes T1, T2 ∈ T . We show that T1 = T2. Let vi � vk be vertices of T1 and v′i � v′k
be vertices of T2 such that vi, v′i ∈ S(C) and vk, v′k /∈ S(C). Because T1 and T2 are
tubes, T1 and T2 contain the vertices in the segments [vi, vk] and [v′i , v′k], respec-
tively. From vi, v′i ∈ S(C) and vk, v′k /∈ S(C), we conclude that the segments [vi, vk]
and [v′i , v′k] intersect. Therefore, the tubes T1 and T2 contain a common vertex. By
Observation 5.4, this implies T1 = T2.

Lemma 5.2 bounds the number of tubes whose inner vertices are visited by a hole.
Following the outline in Section 5.2.2, it remains to show that there is a minimum
unit interval vertex deletion set that contains vertices of a hole in junctions or a
polynomial-time computable vertex in one of the 2|X |−1 tubes whose inner vertices
are visited by the hole. To state the second main result of this subsection, we need
the following concepts, which are illustrated in Figure 5.10.

Definition 5.3. Let X be a unit interval vertex deletion set for a graph G and let T
be a tube in G− X with respect to a bicompatible elimination order � such that T
contains inner vertices visited by a hole H.

1. For two vertices vi and vk of H, we call (vi, vk) the T-boundary of H if, with re-
spect to �, vi is the preceding neighbor in H of H ’s minimum inner vertex in T
and if vk is the succeeding neighbor in H of H ’s maximum inner vertex of T .

2. For the T -boundary (vi, vk) of a hole H, we call a (minimum) vertex-cut
between vi and vk in G− X a (minimum) H-T-cut.

57

5 Unit Interval Vertex Deletion

Observation 5.5. For the T-boundary (vi, vk) of a hole, the tube T contains vi and vk.

Proof. We only show that vi is a vertex of T . Analogously, it can be shown that vk is
a vertex of T . By Definition 5.3(1), vi is the neighbor of an inner vertex v j ∈ [vi, vk]
of T . There is a maximal clique C in G− X that contains vi and v j, because vi and v j

are neighbors. Because v j is not part of a junction, all maximal cliques in G − X
containing v j are not junctions. It follows that C is not a junction and that {C} is
a set containing a maximal clique that is not a junction and whose vertices form
a segment of �. Because the tube T and the set C contain the common vertex v j,
Observation 5.4 implies C ∈ T . In particular, T contains vi. Analogously, it follows
that T contains vk.

We can now state the second main result of this subsection. It shows that if for a
hole H, we do not delete vertices in junctions, then we must delete a minimum
H-T -cut for some tube T .

Lemma 5.3. Let X be a unit interval vertex deletion set for a graph G. Let T be the set
of tubes in G− X with respect to a bicompatible elimination order � that contain inner
vertices visited by a hole H.

If a unit interval vertex deletion set S with S ∩ X = ; does not contain vertices of H
in junctions of G − X , then there is a unit interval vertex deletion set S′ with |S′| ≤ |S|
and a tube T ∈ T for which S′ contains a minimum H-T-cut.

The remainder of this subsection is dedicated to the proof of Lemma 5.3. First, we
present one further observation that is used to show Lemma 5.3.

Observation 5.6. Let X be a unit interval vertex deletion set for a graph G and let T
be a tube in G − X with respect to a bicompatible elimination order �. If a hole H
visits T , then, for any two vertices vi � vk of H in T , the hole H has an induced subpath
from vi to vk consisting of only vertices in the segment [vi, vk].

Proof. Because T is a tube, no vertex in [vi, vk] has neighbors in X . From Observa-
tion 5.2(1), it follows that vi has a succeeding neighbor in H and vk has a preceding
neighbor in H. As a consequence, H contains a vertex v j ∈ [vi, vk]. Thus, H has an
induced subpath P from vi via v j to vk. Because no vertex in [vi, vk] has neighbors
in X , the induced path P contains only vertices [vi, vk] by Observation 5.2(1).

We now prove Lemma 5.3, which essentially shows that if for a hole H we do not
delete vertices in junctions, then we must delete a minimum H-T -cut for some
tube T . The proof is subdivided into two claims: we first show that a unit interval
vertex deletion set S that is disjoint from a given unit interval vertex deletion set X
contains an H-T -cut C for some tube T ∈ T if it does not contain vertices of H in

58

5.3 Algorithmic Details

vi vk

T

G− X

X

Figure 5.11: Difficulty in the proof of Claim 5.1. A hole H (bold edges) visits the
tube T . The T -boundary of H is (vi, vk). If we replace the bold path from vi to vk

through T by the waved path, we do not obtain an induced cycle because the dashed
edges form chords.

junctions. Second, we show that a minimum H-T -cut C ′ contains a vertex of every
hole that contains vertices within the T -boundary of H. Finally, we show that if C is
not a minimum H-T -cut, then we can transform S into a unit interval vertex deletion
set S′ with |S′|< |S| that contains C ′.

Claim 5.1. Let X be a unit interval vertex deletion set for a graph G. Let the set T
contain the tubes in G with respect to a bicompatible elimination order � whose
inner vertices are visited by a hole H in G. If a unit interval vertex deletion set S with
S ∩ X = ; does not contain vertices of H in junctions, then S contains an H-T -cut for
some tube T ∈ T .

Proof. For the sake of contradiction, assume that S does not contain an H-T -cut for
any tube T ∈ T . We show that G − S contains a hole. The proof is based on the
following idea, which is simple but needs some care. For each tube T ∈ T , consider
the T -boundary (vi, vk) of H. By Observation 5.5, the tube T contains vi and vk,
which by Observation 5.6 implies the existence of a subpath P(T) of H from vi to vk

in G− X only containing vertices of T . As S does not contain an H-T -cut, there is a
shortest (and therefore induced) path Q(T) from vi to vk in G − (S ∪ X). Moreover,
S does neither contain vertices of H in junctions nor in X . It follows that we obtain
a cycle C in G − S from H by replacing P(T) by Q(T) in H for each tube T ∈ T .
Unfortunately, C is not necessarily a hole, as Figure 5.11 illustrates. In the following,
we construct a hole in G − S from C , which contradicts the assumption that S is a
unit interval vertex deletion set.

First, we show that C is a simple cycle, that is, it does not visit a vertex twice. By
Observation 5.2(1), for each tube T ∈ T and its T -boundary (vi, vk), the induced
paths P(T) and Q(T) only contain vertices in the segment [vi, vk]. In particular, they
are vertex-disjoint from any induced subpath of H that does not contain vertices
in [vi, vk]. Additionally, because two distinct tubes T1, T2 ∈ T do not contain common

59

5 Unit Interval Vertex Deletion

v′i vi v∗i v j v′kvkv∗k

Figure 5.12: Illustration for the proof of Claim 5.2. The solid path is part of the hole H ′ that
is assumed to exist. The dashed edges are implied by Observation 5.2(2) and connect vi to vk.

vertices (Observation 5.4), the paths Q(T1) and Q(T2) are vertex-disjoint. It follows
that C is simple.

We now construct a hole in G − S from the cycle C . The cycle C contains a
vertex v ∈ X . For some tube T ∈ T , consider a vertex v j on the replacement
path Q(T). The vertex v j is a vertex of C . The shortest path from v j to v consists of
at least three vertices, because v j is contained in T and thus has no neighbors in X .
From C being a simple cycle, it follows that two paths from v to v j exist that, except
for v and v j, are vertex-disjoint. Because both paths consist of at least three vertices,
we can conclude that there is a hole in G−S. This contradicts the assumption that S
is a unit interval vertex deletion set.

Claim 5.2. Let X be a unit interval vertex deletion set for a graph G. Let T be a tube
in G with respect to a bicompatible elimination order � such that the inner vertices
of T are visited by a hole H. If a vertex set S contains an H-T -cut, then no hole in
G−S contains vertices of the segment [vi, vk], where (vi, vk) is the T -boundary of H.

Proof. For the sake of contradiction, assume that a hole H ′ in G − S contains a
vertex v j ∈ [vi, vk]. The constructions made in this proof are illustrated in Figure 5.12.
Let v∗i be the minimum vertex of H ′ in T with vi � v∗i and let v∗k be the maximum
vertex of H ′ in T with v∗k � vk. Because v∗i and v∗k are in T , they have no neighbors
in X . Observation 5.2(1) implies that v∗i has a preceding neighbor v′i in H ′ and that v∗k
has a succeeding neighbor v′k in H ′. By choice of v∗i , v∗k , v′i , and v′k and because vi

and vk are in T by Observation 5.5, we have v′i � vi � v∗i � v j � v∗k � vk � v′k (they
need not be pairwise distinct). Because v′i and v∗i are adjacent, [v′i , v∗i]\S induces a
clique in G− (S ∪ X) that contains vi by Observation 5.2(2). Thus, if vi 6= v∗i , then vi

is adjacent to v∗i . Analogously, v′k is adjacent to v∗k if v′k 6= v∗k . Since the vertices v∗i
and v∗k are connected in G − (S ∪ X), there is a path from vi to vk in G − (S ∪ X),
contradicting the assumption that S contains an H-T -cut. It follows that no hole
in G− S contains vertices of the segment [vi, vk] if S contains an H-T -cut.

We now prove Lemma 5.3. We show that if for a hole H, we do not delete vertices in
junctions, then we must delete a minimum H-T -cut for some tube T .

60

5.3 Algorithmic Details

Proof of Lemma 5.3. By assumption, the unit interval vertex deletion set S with
S∩X = ; does not contain vertices of the hole H in junctions of G−X . By Claim 5.1,
S contains an H-T -cut C for some tube T ∈ T . We show that there is a unit interval
vertex deletion set S′ with |S′| ≤ |S| that contains a minimum H-T -cut.

Let (vi, vk) be the T -boundary of H. We first show that C ′ := C ∩ [vi, vk] is an
H-T -cut: if G − X contains an induced path P from vi to vk, then P only contains
vertices from the segment [vi, vk] by Observation 5.2(1). As the H-T -cut C contains
a vertex of P, which is in [vi, vk], also C ′ = C ∩ [vi, vk] contains a vertex of P. It
follows that C ′ is an H-T -cut.

If C ′ is a minimum H-T -cut, then the lemma is proven because C ′ ⊆ S. Otherwise,
let C∗ be a minimum H-T -cut. Because C∗ is a minimum H-T -cut, one has |C∗| ≤ |C ′|
and C∗ ⊆ [vi, vk]; otherwise, C∗∩[vi, vk]would be a smaller H-T -cut. We now choose
S′ := (S\C ′)∪ C∗ and show that S′ is a unit interval vertex deletion set for G.

Assume, for the sake of contradiction, that G− S′ contains a hole. Because G− S
is a unit interval graph, this hole contains a vertex that is in G − S′ but not in G − S,
implying that the hole contains a vertex from S\S′ = C ′\C∗. However, C ′ only
contains vertices in the segment [vi, vk] and no hole in G− (S′∪ X) contains vertices
in this segment by Claim 5.2, because S′ contains the H-T -cut C∗. It follows that S′

is a unit interval vertex deletion set. Finally, |C∗| ≤ |C ′| implies |S′| ≤ |S|.

5.3.3 Bounded Search Tree

Based on the results in the previous subsections, we now prove Theorem 5.4.

Proof of Theorem 5.4. Given an n-vertex graph G and a unit interval vertex deletion
set X for G, we search for a unit interval vertex deletion set S for G with |S| < |X |
and S∩X = ;. We start with S := ; and apply Branching Rule 5.1 as long as |S|< |X |
to destroy forbidden induced subgraphs with at most six vertices. Because each such
forbidden induced subgraph contains one vertex in the unit interval vertex deletion
set X , we find such a forbidden induced subgraph in O(|X |n5) time and branch into
at most five cases to add one of its vertices to S.

If |S| ≥ |X | and Branching Rule 5.1 is still applicable, return “no” because S
cannot be contained in a unit interval vertex deletion set for G that is smaller
than X . Otherwise, proceed as follows: compute a bicompatible elimination order �
for G − (S ∪ X). This works in linear time [PD03] because G − (S ∪ X) is a unit
interval graph. From this bicompatible elimination order, a set C of all maximal
cliques of G − (S ∪ X) can easily be computed in O(n2) time by finding, for each
vertex v in G− (S ∪ X), its last neighbor with respect to �.

Now, sort the set C such that C1 occurs before C2 if, in �, the minimum vertex
of C1 occurs before the minimum vertex of C2. Because a unit interval graph has at

61

5 Unit Interval Vertex Deletion

most n maximal cliques [BLS99, p. 195], this is possible in O(n · n log n) time, where
O(n) time can be used to find the minimum vertex of a clique. From the sorted set C,
compute a set T of all tubes in G − (S ∪ X) in O(n) time as follows: repeatedly find
the first clique C in C that is not a junction and not yet part of a tube and add C and
all succeeding cliques in C to a new tube T until a junction is encountered.

Now, as long as |S|< |X |, repeatedly find a hole H in G− S and add at least one
vertex of H to S as follows: because G − S is an almost unit interval graph and
G−(S∪X) is a unit interval graph, recursively branch into at most 12|X | possibilities
to choose a vertex of H from a junction for inclusion in S (Lemma 5.1) and into
at most 2|X | − 1 possibilities to choose tube T ∈ T for which an H-T -cut shall be
included in S (Lemma 5.2, Lemma 5.3).

In each search tree node, we branch into at most 14|X | − 1 cases (at most five
cases for Branching Rule 5.1 and at most 14|X |−1 for a hole in G−S). In each case,
at least one vertex is chosen for inclusion in S. As a result, the corresponding search
tree has at most (14|X | − 1)|X |−1 nodes.

To analyze the running time for processing each node, it remains to analyze the
running time for finding holes and minimum H-T -cuts. A hole in G − S can be
found in O(|X |(n+m)) time by breadth-first search starting at each vertex in X . A
minimum H-T -cut is computable in O(

p
nm) time [Sch03, Theorem 9.8].

We have seen in Section 5.2.1 that Theorem 5.4 implies Theorem 5.1. It follows that
Unit Interval Vertex Deletion can be solved in O((14k+ 14)k+1 · kn6) time.

5.4 Conclusion

We presented an algorithm for Unit Interval Vertex Deletion running in O((14k+
14)k+1 · kn6) time. At this point, we revive the question of Marx [Mar09] whether In-
terval Vertex Deletion is fixed-parameter tractable. As our algorithm heavily relies
on bicompatible elimination orders, which generally do not exist for interval graphs,
it is not straightforward to extend the algorithm to Interval Vertex Deletion.

Very likely, an implementation of the algorithm would perform much better
than the analyzed worst-case running time: as long as holes with fewer than
14|X | − 1 vertices exist in the graph, the algorithm never actually branches into
14|X | − 1 cases. A prospectively performance-increasing implementation trick is
(besides searching for small forbidden induced subgraphs first) trying to destroy
holes by deleting inner vertices of tubes: in this case, Lemma 5.3 has shown that
a large set of vertices can be deleted. Since the presented algorithm is easy to
implement, running experiments to reveal the actual running time behavior of the
algorithm is desirable.

62

5.4 Conclusion

It would be interesting to see if Chordal Vertex Deletion or Disjoint Unit
Interval Vertex Deletion on almost unit interval graphs is NP-hard. We have made
progress in this direction by showing Chordal Vertex Deletion to be NP-complete
on {claw, net, tent}-free graphs.

An obvious bottleneck for the running time of our algorithm is the time needed
to find a claw, net, or tent in a graph. Developing faster methods to find these
forbidden induced subgraphs would significantly improve the polynomial part in
the running time of the presented algorithm. Employing data reduction, like the
following reduction to a problem kernel, would allow us to execute the search for
claws, nets, and tents in smaller input graphs.

For a Unit Interval Vertex Deletion instance (G, k), a polynomial-time com-
putable Unit Interval Vertex Deletion instance (G′, k′) with k′ ≤ k and |G′| ≤ f (k)
is a problem kernel if (G, k) is a yes-instance if and only if (G′, k′) is a yes-instance,
where f is a computable function only depending on k. A problem kernel for
Disjoint Unit Interval Vertex Deletion would likewise be interesting. Besides
searching for problem kernels for Unit Interval Vertex Deletion, other data reduc-
tion approaches are desirable: to reduce the number of possible ways of destroying a
hole, data reduction rules to reduce the number of maximal cliques in a unit interval
graph could be exploited. Ideally, one would reduce the number of maximal cliques
to some constant value.

It is open to study the parameterized complexity of Unit Interval Editing, which
asks whether a graph can be transformed into a unit interval graph by adding or
removing at most k edges.

63

6 Conclusion

For future research, it seems natural to further exploit and find more connections
between seriation on erroneous data and algorithmic graph theory. In this work,
we have exploited graph-theoretic connections to show that Partial Robinsonian
Similarity and Robinson (Lp,N)-Fitting are NP-complete. We also obtained a
fixed-parameter algorithm for Partial Robinsonian {0, 1}-Similarity parameterized
by the number of sought outliers, which is applicable to measuring indifference.
The corresponding fixed-parameter algorithm for Unit Interval Vertex Deletion
exploits many tools and results specific to the involved graph classes, like unit in-
terval graphs and the more general claw-free graphs. Probably, the large pool of
graph-theoretic results yields more insights into seriation problems.

As discussed in Section 4.1, it is not obvious how the fixed-parameter algorithm for
Unit Interval Vertex Deletion can be used for the general Partial Robinsonian
Similarity problem. An extensive analysis of the class of graphs that represent
Robinsonian similarities (graphs whose vertices are the given objects and whose
edges are weighted by the similarities between objects) could lead the way to
fixed-parameter algorithms for Robinson (Lp, M)-Fitting and Partial Robinsonian
Similarity. Also, graph-theoretic results may be obtained from the field of seriation.
For example, an interesting side result can be drawn from the algorithm for Restric-
ted Robinson (L1, {0,1})-Fitting presented in Section 4.3.3, which also solves the
following graph editing problem:

Bicompatibility Editing
Input: A graph G = (V, E) and a total order � on V .
Output: A graph G′ = (V, E′) for which � is a bicompatible elimination order such

that |E∆E′| is minimized.

Exploiting the connection between Robinsonian similarities and unit interval graphs,
Algorithm 4.2 from Section 4.3.3 solves this problem in O(n2) time.

It seems that implementing the algorithms presented in this work is feasible.
Especially, it would be interesting to compare the performance of the mixed integer
program in Section 4.2.2 with the performance of other algorithms solving seriation
problems on inaccurate data [HHB08]. Additionally, experiments could reveal the
actual running time behavior of the presented Unit Interval Vertex Deletion
algorithm, compared to its analyzed worst-case running time.

64

Bibliography

[ABH99] Jonathan E. Atkins, Erik G. Boman, and Bruce Hendrickson. A spectral
algorithm for seriation and the consecutive ones problem. SIAM J.
Comput., 28(1):297–310, 1999. Cited on pages 9, 18, 25, and 26.

[BB01] Jean-Pierre Barthélemy and François Brucker. NP-hard approximation
problems in overlapping clustering. Journal of Classification, 18(2):159–
183, 2001. Cited on pages 18 and 24.

[BBD06] Pablo Burzyn, Flavia Bonomo, and Guillermo Durán. NP-completeness
results for edge modification problems. Discrete Applied Mathematics,
154(13):1824–1844, 2006. Cited on pages 19 and 25.

[BKMN10] René van Bevern, Christian Komusiewicz, Hannes Moser, and Rolf Nie-
dermeier. Measuring indifference: Unit interval vertex deletion. In
Proceedings of the 36th International Workshop on Graph Theoretic Con-
cepts in Computer Science, Zarós, Crete, Greece, June 2010. Cited on
page 2.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algorithms.
Journal of Computer and System Sciences, 13:335–379, 1976. Cited on
page 19.

[BLS99] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes:
a survey. SIAM, Philadelphia, PA, USA, 1999. Cited on pages 19, 42,
and 62.

[Cai96] Leizhen Cai. Fixed-parameter tractability of graph modification problems
for hereditary properties. Information Processing Letters, 58(4):171–176,
1996. Cited on page 42.

[CF97] Victor Chepoi and Bernard Fichet. Recognition of Robinsonian dissimi-
larities. Journal of Classification, 14(2):311–325, 1997. Cited on pages 8,
9, 18, 25, and 26.

65

Bibliography

[CFS09] Victor Chepoi, Bernard Fichet, and Morgan Seston. Seriation in the
presence of errors: NP-hardness of l∞-fitting Robinson structures to
dissimilarity matrices. Journal of Classification, 26(3):279–296, 2009.
Cited on pages 18, 21, 24, 29, 30, 32, 37, 39, and 41.

[Cha98] Maw-Shang Chang. Efficient algorithms for the domination prob-
lems on interval and circular-arc graphs. SIAM Journal on Computing,
27(6):1671–1694, 1998. Cited on page 19.

[CKN+98] Derek G. Corneil, Hiryoung Kim, Sridhar Natarajan, Stephan Olariu, and
Alan P. Sprague. Simple linear time recognition of unit interval graphs.
Information Processing Letters, 55(2):99–104, 1998. Cited on page 19.

[CS09] Victor Chepoi and Morgan Seston. Seriation in the presence of errors:
A factor 16 approximation algorithm for l∞-fitting Robinson structures
to distances. Algorithmica, 2009. Available electronically. Cited on
page 18.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer, 1999. Cited on page 16.

[DFL+07] Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston,
Frances A. Rosamond, and Kim Stevens. An O(2O(k)n3) FPT algorithm
for the undirected feedback vertex set problem. Theory of Computing
Systems, 41(3):479–492, 2007. Cited on page 46.

[DGN10] Michael Dom, Jiong Guo, and Rolf Niedermeier. Approximation and
fixed-parameter algorithms for consecutive ones submatrix problems.
Journal of Computer and System Sciences, 2010. To appear. Cited on
pages 13 and 19.

[Dom08] Michael Dom. Recognition, Generation, and Application of Binary Matrices
with the Consecutive-Ones Property. PhD thesis, Institut für Informatik,
Friedrich-Schiller-Universität Jena, Germany, 2008. Cited on pages 12,
13, and 19.

[Dom09] Michael Dom. Algorithmic aspects of the consecutive-ones property.
Bulletin of the European Association for Theoretical Computer Science,
98:27–59, 2009. Cited on pages 12 and 19.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer,
2006. Cited on page 16.

66

Bibliography

[FGMN09] Michael R. Fellows, Jiong Guo, Hannes Moser, and Rolf Niedermeier. A
complexity dichotomy for finding disjoint solutions of vertex deletion
problems. In Proceedings of the 34th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS ’09), volume 5734 of
LNCS, pages 319–330. Springer, 2009. Cited on page 46.

[Fou93] Jean. L. Fouquet. A strengthening of Ben Rebea’s lemma. Journal of
Combinatorial Theory Series B, 59(1):35–40, 1993. Cited on page 52.

[Gau82] Hugh G. Gauch. Multivariate Analysis in Community Ecology, volume 1
of Cambridge Studies in Ecology. Cambridge University Press, 1982.
Cited on page 8.

[GGH+06] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian
Wernicke. Compression-based fixed-parameter algorithms for feedback
vertex set and edge bipartization. Journal of Computer and System
Sciences, 72(8):1386–1396, 2006. Cited on page 46.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
1979. Cited on pages 14, 16, 19, 27, and 31.

[GJS76] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some
simplified NP-complete graph problems. Theoretical Computer Science,
1(3):237–267, 1976. Cited on page 44.

[GJY10] Dongdong Ge, Xiaoye Jiang, and Yinyu Ye. A note on complexity of Lp

minimization. Manuscript, 2010. Cited on page 31.

[GLL82] U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. Efficient algorithms for interval
graphs and circular-arc graphs. Networks, 12(4):459–467, 1982. Cited
on page 19.

[GMN09] Jiong Guo, Hannes Moser, and Rolf Niedermeier. Iterative compression
for exactly solving NP-hard minimization problems. In Algorithmics of
Large and Complex Networks, volume 5515 of Lecture Notes in Computer
Science, pages 65–80. Springer, 2009. Cited on pages 45 and 46.

[HG02] MohammadTaghi HajiAghayi and Yashar Ganjali. A note on the consecu-
tive ones submatrix problem. Information Processing Letters, 83(3):163–
166, 2002. Cited on pages 12 and 19.

67

Bibliography

[HH05] Pavol Hell and Jing Huang. Certifying LexBFS recognition algorithms
for proper interval graphs and proper interval bigraphs. SIAM Journal
on Discrete Mathematics, 18(3):554–570, 2005. Cited on page 19.

[HHB08] Michael Hahsler, Kurt Hornik, and Christian Buchta. Getting things in
order: An introduction to the R package seriation. Journal of Statistical
Software, 25(3):1–34, March 2008. Cited on pages 8 and 64.

[Hsu02] Wen-Lian Hsu. A simple test for the consecutive ones property. Journal
of Algorithms, 43:1–16, 2002. Cited on page 19.

[Hub74] Lawrence J. Hubert. Problems of seriation using a subject by item
response matrix. Psychological Bulletin, 81:976–983, 1974. Cited on
page 8.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming.
In Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing (STOC ’84), pages 302–311, New York, NY, USA, 1984. ACM.
Cited on pages 27, 31, and 39.

[Ken69] David G. Kendall. Incidence matrices, interval graphs and seriation in
archaeology. Pacific Journal of Mathematics, 28(3):565–570, 1969. Cited
on page 7.

[Kha79] Leonid G. Khachiyan. A polynomial algorithm in linear programming.
Doklady Akademii Nauk SSSR, 244:1093–1096, 1979. Cited on pages 27,
31, and 39.

[Luc56] R. Duncan Luce. Semiorders and a theory of utility discrimination.
Econometrica, 24:178–191, 1956. Cited on pages 7 and 11.

[LY80] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for
hereditary properties is NP-complete. Journal of Computer and System
Sciences, 20(2):219–230, 1980. Cited on page 19.

[Mar09] Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica,
2009. Available electronically. Cited on pages 19, 42, 43, and 62.

[MR84] Boris G. Mirkin and Sergei N. Rodin. Graphs and Genes. Springer, 1984.
Cited on pages 9, 18, 25, and 26.

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006. Cited on page 16.

68

Bibliography

[NN87] Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algo-
rithms in Convex Programming. SIAM, 1987. Cited on pages 30, 31, 32,
and 33.

[Nök91] Klaus Nökel. Temporally Distributed Symptoms in Technical Diagnosis.
Springer, 1991. Cited on page 8.

[PD03] B. S. Panda and Sajal K. Das. A linear time recognition algorithm for
proper interval graphs. Information Processing Letters, 87(3):153–161,
2003. Cited on pages 19, 49, 52, and 61.

[Pet99] William M. F. Petrie. Sequences in prehistoric remains. Journal of the
Anthropological Institute, 29:295–301, 1899. Cited on page 7.

[Rob51] W. S. Robinson. A method for chronologically ordering archaeological
deposits. American Antiquity, 16:293–301, 1951. Cited on pages 7, 8,
and 18.

[Rob69] Fred S. Roberts. Indifference graphs. In Proof Techniques in Graph
Theory, pages 139–146. Academic Press, New York, 1969. Cited on
pages 10, 11, 12, 13, 19, 23, and 52.

[Rob78] Fred S. Roberts. Graph Theory and Its Applications to Problems of Society.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
1978. Cited on pages 7, 10, 11, 12, 13, 19, 23, 43, 44, and 52.

[Rob79] Fred S. Roberts. Indifference and seriation. Annals of the New York
Academy of Sciences, 328:173–182, 1979. Cited on pages 9 and 11.

[RSV04] Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transver-
sals. Operations Research Letters, 32(4):299–301, 2004. Cited on
pages 45 and 46.

[Sch03] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Effi-
ciency, volume A. Springer, 2003. Cited on page 62.

[Weg67] Gerd Wegner. Eigenschaften der Nerven homologisch-einfacher Familien
im Rn. PhD thesis, Universität Göttingen, Germany, 1967. Cited on
pages 19, 42, 43, and 44.

69

	Introduction
	Seriation on Inaccurate Data
	Seriation and Unit Interval Graphs
	Relation to Consecutive Ones Submatrix

	Prerequisites
	Orders
	Seriation
	Graph Theory
	Parameterized Complexity

	Related Work and New Results
	Related Work
	New Results

	Seriation
	Partial Robinsonian Similarities
	Robinson Fitting
	NP-Completeness
	A Mixed Integer Program

	Restricted Robinson Fitting
	Polynomial-Time Lp-Fitting by Real-Valued Similarities
	Linear-Time L-Fitting
	Linear-Time L1-Fitting by {0,1}-Similarities

	Conclusion

	Unit Interval Vertex Deletion
	Fixed-Parameter Tractability, Stronger NP-Hardness Results
	Outline of a New Fixed-Parameter Algorithm
	Iterative Compression
	Disjoint Unit Interval Vertex Deletion

	Algorithmic Details
	Bounding the Number of Vertices in Junctions
	Finding Optimal Solutions in Tubes
	Bounded Search Tree

	Conclusion

	Conclusion

