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NP-hard problems considered in the thesis

d -Hitting Set
I Race condition detection in parallel Java programs.

[O’Callahan and Choi, ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming 2003]

Dag Partitioning
I Real-time tracking of trends and topics on the internet.

[Leskovec, Backstrom, and Kleinberg, ACM SIGKDD Conference on Knowledge
Discovery and Data Mining 2009]

[Suen, Huang, Eksombatchai, Sosic, and Leskovec, International Conference on
World Wide Web 2013]

2-Union Independent Set
I Job scheduling, e. g. in steel manufacturing.

[Höhn, König, Möhring, and Lübbecke, Management Science 57, 2011]

Hypergraph Cutwidth
I Automatic testing of circuits.

[Prasad, Chong, and Keutzer, Design Automation Conference 1999]

Fixed-parameter linear-time algorithms René van Bevern 2/16



Fixed-parameter algorithms

Challenge: No polynomial-time algorithms for NP-hard
problems known.

Goal: Solve NP-hard problems efficiently if certain
parameters of the input are small.

Approach: Solve problems in f (k) · poly(n) time for some
parameter k  fixed-parameter algorithms.

Common lines of research:
I Make f (k) smaller, e. g. improve it from kk to 2k .
I Find fixed-parameter algorithms for smaller parameters.

Still: Algorithms running in O(2k · n6) time.

Focus change: Solve problems in linear time for constant
parameter values  fixed-parameter linear-time algorithms.

Back to the roots:
[Bodlaender, SIAM Journal on Computing 25, 1996:

“A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth”]
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d-Hitting Set

Input: A hypergraph H = (V ,E ) with a set V of vertices,
a set E ⊆ 2V of hyperedges, each of cardinality at
most a constant d , and a natural number k .

Question: Is there a hitting set S ⊆ V of size at most k , that
is, ∀e ∈ E : S ∩ E 6= ∅?
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Problem kernelization

d-HS is NP-hard  data reduction, problem kernelization:

(H, k) (H ′, k ′)
polynomial time

∈ d-HS ⇐⇒ d-HS 3

≤ f (k)
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d -HS problem kernels

No O(kd−ε)-size problem kernel.
[Dell and van Melkebeek, ACM Symposium on Theory of Computing 2010]

O(kd)-size problem kernels for d-HS in polynomial time.
[Flum and Grohe, Parameterized Complexity Theory, 2006]

[Damaschke, Theoretical Computer Science 351, 2006]

[S. Kratsch, Algorithmica 62, 2012]

O(kd−1)-vertex problem kernels for d-HS in polynomial time.
[Abu-Khzam, Journal of Computer and System Sciences 76, 2010]

[Moser, Dissertation, Friedrich-Schiller-Universität Jena, 2010]

New: O(kd)-size problem kernel in O(|V |+ |E |) time.

I Running time and size are essentially optimal.

I d-HS solvable in O(dk + |V |+ |E |) time.
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d -HS problem kernels

No O(kd−ε)-size problem kernel.
[Dell and van Melkebeek, ACM Symposium on Theory of Computing 2010]

O(kd)-size problem kernels for d-HS in polynomial time.
[Flum and Grohe, Parameterized Complexity Theory, 2006]

[Damaschke, Theoretical Computer Science 351, 2006]

[S. Kratsch, Algorithmica 62, 2012]

O(kd−1)-vertex problem kernels for d-HS in polynomial time.
[Abu-Khzam, Journal of Computer and System Sciences 76, 2010]

[Moser, Dissertation, Friedrich-Schiller-Universität Jena, 2010]

New: O(kd)-size problem kernel in O(|V |+ |E |) time.

I Running time and size are essentially optimal.

I d-HS solvable in O(dk + |V |+ |E |) time.

Fixed-parameter linear-time algorithms René van Bevern 6/16
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Sunflowers

A family P of sets that pairwise only intersect in a core C is a
sunflower. The sets in P are petals.

Theorem: If a d-uniform hypergraph H has more than
kd · d ! hyperedges, then it contains a sunflower of size k that
can be found in polynomial time.

[Erdős and Rado, Journal of the London Mathematical Society 35(1), 1960]

[Flum and Grohe, Parameterized Complexity Theory, 2006]
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Sunflowers

A family P of sets that pairwise only intersect in a core C is a
sunflower. The sets in P are petals.

Theorem: If a d-uniform hypergraph H has more than
kd · d ! hyperedges, then it contains a sunflower of size k that
can be found in polynomial time.
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Pruning sunflowers

Given a d-HS instance (H, k), repeatedly

I try to find a sunflower with k + 2 petals,

I remove one of its petals from H. [S. Kratsch, Algorithmica 63, 2012]
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Pruning sunflowers

Given a d-HS instance (H, k), repeatedly

I try to find a sunflower with k + 2 petals,

I remove one of its petals from H. [S. Kratsch, Algorithmica 63, 2012]

We try to kernelize this instance for k = 1.
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Pruning sunflowers

Given a d-HS instance (H, k), repeatedly

I try to find a sunflower with k + 2 petals,

I remove one of its petals from H. [S. Kratsch, Algorithmica 63, 2012]

Resulting problem kernel.
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Growing sunflowers

Given a d-HS instance (H, k), create an empty hypergraph H ′.
Then, for each hyperedge e of H:
I if e does not contain the core of a (k+1)-petal sunflower in H ′

I add e to H ′.

I for each C ⊆ e, , then
I add e to sunflower[C ]

I for each v ∈ e \ C , set used[C ][v ]← true

Want this in constant time.

Unfortunately NP-hard to decide.
sunflower[C ] and used[C ] can be accessed in O(d) ⊆ O(1) time
using a prefix tree.

Running time: O(d |V |+ 2dd |E |).
Memory: Θ(|V | · |E |).

Prefix tree has to be initialized incompletely and carefully.
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Growing sunflowers

Given a d-HS instance (H, k), create an empty hypergraph H ′.
Then, for each hyperedge e of H:
I if ∀C ⊆ e : | sunflower[C ]| ≤ k, then

I add e to H ′.
I for each C ⊆ e, if ∀v ∈ e \ C : used[C ][v ] = false, then

I add e to sunflower[C ]
I for each v ∈ e \ C , set used[C ][v ]← true

Want this in constant time.
Unfortunately NP-hard to decide.

sunflower[C ] and used[C ] can be accessed in O(d) ⊆ O(1) time
using a prefix tree.

Running time: O(d |V |+ 2dd |E |).
Memory: Θ(|V | · |E |).

Prefix tree has to be initialized incompletely and carefully.

Fixed-parameter linear-time algorithms René van Bevern 9/16
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Further results on d -Hitting Set

Experimental results

I Instances from a problem arising in radio frequency allocation.
[Sorge, Moser, Niedermeier, and Weller, Conference on Integer Programming

and Combinatorial Optimization 2012]

[Babcock, Bell Systems Technical Journal 32, 1953]

I 4-HS with 20 · 106 hyperedges processed in about five minutes.

I Prefix trees for sunflower[] and used[] are faster, but
balanced trees have linear memory usage.

Speed up kernels of Abu-Khzam and Moser:

I O(kd−1)-vertex problem kernel in O(|V |+ |E |+ k1.5d) time.
[Abu-Khzam, Journal of Computer and System Sciences 76, 2010]

[Moser, Dissertation, Friedrich-Schiller-Universität Jena, 2010]
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Dag Partitioning

Task: Remove at most k = 3 arcs from a directed acyclic
graph (dag) so that every vertex reaches exactly one sink.

Algorithmic results:

I O(2k · (n + m)) time algorithm.

I Linear-time data reduction.

Strategy: First solve problem for all out-neighbors of v , then for v .

Fixed-parameter linear-time algorithms René van Bevern 11/16
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Experimental results for Dag Partitioning

O(2k · (n + m)) time algorithm on simulated citation networks:

I Instances with m ≥ 107 arcs and k ≤ 190 arc deletions
solvable in five minutes.

I Without the linear-time data reduction, no instance solvable
in less than an hour.

Comparison with known heuristic.
[Leskovec, Backstrom, and Kleinberg, ACM SIGKDD Conference on Knowledge

Discovery and Data Mining 2009]

I Heuristic more than a factor of 2.5 off the optimum.

I Algorithm only runs fast where the heuristic gives optimal
solutions.
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Discovery and Data Mining 2009]

I Heuristic more than a factor of 2.5 off the optimum.

I Algorithm only runs fast where the heuristic gives optimal
solutions.
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2-Union Independent Set

Task: Find at least k = 4 rectangles whose projections onto
neither axis intersect.
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Job Interval Selection

1

2

3

4

5

2

1,5

3,4

Task: Find at least k = 3 rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills one of γ strips.

Known: Solvable in O(2γγ · n) time.
[Halldórsson and Karlsson, International Workshop on Graph-Theoretic Concepts

in Computer Science 2006]

New: O(5.5kk · n) time, where k ≤ γ.

Trick: Randomly move strip i ∈{1, . . . , γ} to strip j ∈{1, . . . , k}.
I Then use O(2γγ · n)-time algorithm with γ = k.

I Repeat O(ek · | ln ε|) times for error probability ≤ ε.
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Job Interval Selection

1

2

3

4

5

2

1,5

3,4

Task: Find at least k = 3 rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills one of γ strips.

Known: Solvable in O(2γγ · n) time.
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Compact 2-Union Independent Set

Task: Find at least k rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills any subset of
γ strips (we say that one axis is γ-compact).

New: O(2γγ · n) time algorithm.

I Generalization of Halldórsson and Karlsson’s algorithm.

I γ-compact representation for minimum γ in linear time.

Experiments on random rectangles:

I n ≤ 0.6 · 106 rectangles in γ ≤ 15 strips solved in five minutes.
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Conclusion

Aspects brought into fixed-parameter algorithms:

I Returning to the initial goal—efficient algorithms.

I Data structures are suddenly important.

Insights from experiments:

I Simpler algorithms.

I Provable speed-ups.

I We are on the right way.

Challenges:

I Parameter race for fixed-parameter linear-time algorithms.

I Linear-time transformations to problems with well-tuned
solvers (SAT, ILP) + linear-time data reduction.

I Lower bounds.
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Conclusion

Aspects brought into fixed-parameter algorithms:

I Returning to the initial goal—efficient algorithms.

I Data structures are suddenly important.

Insights from experiments:

I Simpler algorithms.

I Provable speed-ups.

I We are on the right way.

Challenges:

I Parameter race for fixed-parameter linear-time algorithms.

I Linear-time transformations to problems with well-tuned
solvers (SAT, ILP)

+ linear-time data reduction.

I Lower bounds.

Fixed-parameter linear-time algorithms René van Bevern 16/16
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