Fixed-Parameter Linear-Time Algorithms
for Graph and Hypergraph Problems
Arising in Industrial Applications

René van Bevern

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany

Wissenschaftliche Aussprache, 17. Juni 2014
NP-hard problems considered in the thesis

d-Hitting Set

- Race condition detection in parallel Java programs.

 [O’Callahan and Choi, ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming 2003]

Dag Partitioning

- Real-time tracking of trends and topics on the internet.

 [Leskovec, Backstrom, and Kleinberg, ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2009]

2-Union Independent Set

- Job scheduling, e. g. in steel manufacturing.

 [Höhn, König, Möhring, and Lübbecke, Management Science 57, 2011]

Hypergraph Cutwidth

- Automatic testing of circuits.

 [Prasad, Chong, and Keutzer, Design Automation Conference 1999]
Fixed-parameter algorithms

Challenge: No polynomial-time algorithms for NP-hard problems known.

Goal: Solve NP-hard problems efficiently if certain parameters of the input are small.
Fixed-parameter algorithms

Challenge: No polynomial-time algorithms for **NP-hard problems** known.

Goal: Solve NP-hard problems efficiently if certain **parameters** of the input are **small**.

Approach: Solve problems in $f(k) \cdot \text{poly}(n)$ time for some parameter $k \rightsquigarrow \text{fixed-parameter algorithms}$.

Common lines of research:
- Make $f(k)$ smaller, e.g. improve it from k^k to 2^k.
- Find fixed-parameter algorithms for smaller parameters.

Still:
- Algorithms running in $O(2^k \cdot n^6)$ time.

Focus change:
- Solve problems in linear time for constant parameter values $\rightsquigarrow \text{fixed-parameter linear-time algorithms}$.

Back to the roots:
Fixed-parameter algorithms

Challenge: No polynomial-time algorithms for **NP-hard problems** known.

Goal: Solve NP-hard problems efficiently if certain **parameters** of the input are **small**.

Approach: Solve problems in $f(k) \cdot \text{poly}(n)$ time for some parameter $k \rightsquigarrow \text{fixed-parameter algorithms}$.

Common lines of research:

- Make $f(k)$ smaller, e.g. improve it from k^k to 2^k.
- Find fixed-parameter algorithms for smaller parameters.
Fixed-parameter algorithms

Challenge: No polynomial-time algorithms for NP-hard problems known.

Goal: Solve NP-hard problems efficiently if certain parameters of the input are small.

Approach: Solve problems in $f(k) \cdot \text{poly}(n)$ time for some parameter $k \leadsto$ fixed-parameter algorithms.

Common lines of research:
- Make $f(k)$ smaller, e.g. improve it from k^k to 2^k.
- Find fixed-parameter algorithms for smaller parameters.

Still: Algorithms running in $O(2^k \cdot n^6)$ time.
Fixed-parameter algorithms

Challenge: No polynomial-time algorithms for NP-hard problems known.

Goal: Solve NP-hard problems efficiently if certain parameters of the input are small.

Approach: Solve problems in $f(k) \cdot \text{poly}(n)$ time for some parameter $k \rightsquigarrow$ fixed-parameter algorithms.

Common lines of research:
- Make $f(k)$ smaller, e.g. improve it from k^k to 2^k.
- Find fixed-parameter algorithms for smaller parameters.

Still: Algorithms running in $O(2^k \cdot n^6)$ time.

Focus change: Solve problems in linear time for constant parameter values \rightsquigarrow fixed-parameter linear-time algorithms.
Fixed-parameter algorithms

Challenge: No polynomial-time algorithms for **NP-hard problems** known.

Goal: Solve NP-hard problems efficiently if certain **parameters** of the input are **small**.

Approach: Solve problems in $f(k) \cdot \text{poly}(n)$ time for some parameter $k \rightsquigarrow$ **fixed-parameter algorithms**.

Common lines of research:
- Make $f(k)$ smaller, e.g. improve it from k^k to 2^k.
- Find fixed-parameter algorithms for smaller parameters.

Still: Algorithms running in $O(2^k \cdot n^6)$ time.

Focus change: Solve problems in **linear time** for constant parameter values \rightsquigarrow **fixed-parameter linear-time algorithms**.

Back to the roots:
d-Hitting Set

Input: A hypergraph $H = (V, E)$ with a set V of vertices, a set $E \subseteq 2^V$ of hyperedges, each of cardinality at most a constant d, and a natural number k.

Question: Is there a hitting set $S \subseteq V$ of size at most k, that is, $\forall e \in E : S \cap E \neq \emptyset$?
d-Hitting Set

Input: A hypergraph $H = (V, E)$ with a set V of vertices, a set $E \subseteq 2^V$ of hyperedges, each of cardinality at most a constant d, and a natural number k.

Question: Is there a hitting set $S \subseteq V$ of size at most k, that is, $\forall e \in E : S \cap E \neq \emptyset$?
Problem kernelization

d-HS is NP-hard \implies data reduction, **problem kernelization**:

\[(H, k) \overset{\text{polynomial time}}{\in} d\text{-HS} \iff d\text{-HS} \ni (H', k') \leq f(k) \]
Problem kernelization

\(d\text{-}HS \) is NP-hard \(\iff \) data reduction, \textbf{problem kernelization}:

\[
(H, k) \xrightarrow{\text{polynomial time}} (H', k') \leq f(k) \text{ poly}(k)
\]
Problem kernelization

\(d\text{-HS} \text{ is NP-hard} \iff \text{data reduction, problem kernelization:}\)

\((H, k) \overset{\text{polynomial linear time}}{\in} d\text{-HS} \iff d\text{-HS} \ni \leq f(k) \text{ poly}(k)\)
\textbf{d-HS problem kernels}

No $O(k^{d-\varepsilon})$-size problem kernel.

[Dell and van Melkebeek, ACM Symposium on Theory of Computing 2010]

$O(k^d)$-size problem kernels for d-HS in polynomial time.

[Flum and Grohe, Parameterized Complexity Theory, 2006]
[Damaschke, Theoretical Computer Science 351, 2006]
[S. Kratsch, Algorithmica 62, 2012]

$O(k^{d-1})$-vertex problem kernels for d-HS in polynomial time.

d-HS problem kernels

No $O(k^{d-\varepsilon})$-size problem kernel.

[Dell and van Melkebeek, ACM Symposium on Theory of Computing 2010]

$O(k^d)$-size problem kernels for d-HS in polynomial time.

[Flum and Grohe, Parameterized Complexity Theory, 2006]
[Damashke, Theoretical Computer Science 351, 2006]
[S. Kratsch, Algorithmica 62, 2012]

$O(k^{d-1})$-vertex problem kernels for d-HS in polynomial time.

New: $O(k^d)$-size problem kernel in $O(|V| + |E|)$ time.
d-HS problem kernels

No $O(k^{d-\varepsilon})$-size problem kernel.

[Dell and van Melkebeek, ACM Symposium on Theory of Computing 2010]

$O(k^d)$-size problem kernels for d-HS in polynomial time.

[Flum and Grohe, Parameterized Complexity Theory, 2006]
[Damashcke, Theoretical Computer Science 351, 2006]
[S. Kratsch, Algorithmica 62, 2012]

$O(k^{d-1})$-vertex problem kernels for d-HS in polynomial time.

New: $O(k^d)$-size problem kernel in $O(|V| + |E|)$ time.

- Running time and size are essentially optimal.
No $O(k^{d-\varepsilon})$-size problem kernel.

[Dell and van Melkebeek, ACM Symposium on Theory of Computing 2010]

$O(k^d)$-size problem kernels for d-HS in polynomial time.

[Flum and Grohe, Parameterized Complexity Theory, 2006]
[Damaschke, Theoretical Computer Science 351, 2006]
[S. Kratsch, Algorithmica 62, 2012]

$O(k^{d-1})$-vertex problem kernels for d-HS in polynomial time.

New: $O(k^d)$-size problem kernel in $O(|V| + |E|)$ time.

- Running time and size are essentially optimal.
- d-HS solvable in $O(d^k + |V| + |E|)$ time.
Sunflowers

A family P of sets that pairwise only intersect in a core C is a **sunflower**. The sets in P are **petals**.
Sunflowers

A family \(P \) of sets that pairwise only intersect in a core \(C \) is a sunflower. The sets in \(P \) are petals.

Theorem: If a \(d \)-uniform hypergraph \(H \) has more than \(k^d \cdot d! \) hyperedges, then it contains a sunflower of size \(k \) that can be found in polynomial time.

[Flum and Grohe, Parameterized Complexity Theory, 2006]
Pruning sunflowers

Given a d-HS instance (H, k), repeatedly

- try to **find** a sunflower with $k + 2$ petals,
- **remove** one of its petals from H. [S. Kratsch, Algorithmica 63, 2012]
Pruning sunflowers

Given a d-HS instance (H, k), **repeatedly**

- try to **find** a sunflower with $k + 2$ petals,
- **remove** one of its petals from H. [S. Kratsch, Algorithmica 63, 2012]

We try to kernelize this instance for $k = 1$.
Pruning sunflowers

Given a d-HS instance (H, k), repeatedly
- try to find a sunflower with $k + 2$ petals,
- remove one of its petals from H. [S. Kratsch, Algorithmica 63, 2012]

Find sunflower of size $k + 2 = 3$.
Pruning sunflowers

Given a d-HS instance (H, k), repeatedly

- try to **find** a sunflower with $k + 2$ petals,
- **remove** one of its petals from H. [S. Kratsch, Algorithmica 63, 2012]

Remove one petal.
Pruning sunflowers

Given a d-HS instance (H, k), repeatedly

- try to find a sunflower with $k + 2$ petals,
- remove one of its petals from H. [S. Kratsch, Algorithmica 63, 2012]

Find sunflower of size $k + 2 = 3$.
Pruning sunflowers

Given a \(d \)-HS instance \((H, k)\), **repeatedly**

- try to **find** a sunflower with \(k + 2 \) petals,
- **remove** one of its petals from \(H \). [S. Kratsch, Algorithmica 63, 2012]

Remove one petal.
Pruning sunflowers

Given a d-HS instance (H, k), repeatedly

- try to find a sunflower with $k + 2$ petals,
- remove one of its petals from H.
 [S. Kratsch, Algorithmica 63, 2012]

Resulting problem kernel.
Growing sunflowers

Given a d-HS instance (H, k), create an empty hypergraph H'. Then, for each hyperedge e of H:

- if e does not contain the core of a $(k+1)$-petal sunflower in H'
 - add e to H'.

Want this in constant time.
Growing sunflowers

Given a d-HS instance (H, k), create an empty hypergraph H'. Then, for each hyperedge e of H:

- if $\forall C \subseteq e$: C is not the core of a $(k + 1)$-petal sunflower in H'
 - add e to H'.

Unfortunately NP-hard to decide.
Growing sunflowers

Given a d-HS instance (H, k), create an empty hypergraph H'. Then, for each hyperedge e of H:

- if $\forall C \subseteq e: |\text{sunflower}[C]| \leq k$, then
 - add e to H'.
Growing sunflowers

Given a d-HS instance (H, k), create an empty hypergraph H'. Then, for each hyperedge e of H:

- if $\forall C \subseteq e: |\text{sunflower}[C]| \leq k$, then
 - add e to H'.
 - for each $C \subseteq e$, if $(e \cup \text{sunflower}[C])$ is a sunflower, then
 - add e to $\text{sunflower}[C]$
Growing sunflowers

Given a d-HS instance (H, k), create an empty hypergraph H'. Then, for each hyperedge e of H:

- if $\forall C \subseteq e: |\text{sunflower}[C]| \leq k$, then
 - add e to H'.
 - for each $C \subseteq e$, if $(e \cup \text{sunflower}[C])$ is a sunflower, then
 - add e to $\text{sunflower}[C]$.
 - for each $v \in e \setminus C$, set $\text{used}[C][v] \leftarrow \text{true}$.
Growing sunflowers

Given a \(d\)-HS instance \((H, k)\), create an empty hypergraph \(H'\). Then, for each hyperedge \(e\) of \(H\):

- if \(\forall C \subseteq e: |\text{sunflower}[C]| \leq k\), then
 - add \(e\) to \(H'\).
 - for each \(C \subseteq e\), if \(\forall v \in e \setminus C: \text{used}[C][v] = \text{false}\), then
 - add \(e\) to \(\text{sunflower}[C]\)
 - for each \(v \in e \setminus C\), set \(\text{used}[C][v] \leftarrow \text{true}\)
Growing sunflowers

Given a \(d\)-HS instance \((H, k)\), create an empty hypergraph \(H'\). Then, for each hyperedge \(e\) of \(H\):

- if \(\forall C \subseteq e: |\text{sunflower}[C]| \leq k\), then
 - add \(e\) to \(H'\).
 - for each \(C \subseteq e\), if \(\forall v \in e \setminus C: \text{used}[C][v] = \text{false}\), then
 - add \(e\) to \(\text{sunflower}[C]\)
 - for each \(v \in e \setminus C\), set \(\text{used}[C][v] \leftarrow \text{true}\)

\(\text{sunflower}[C]\) and \(\text{used}[C]\) can be accessed in \(O(d) \subseteq O(1)\) time using a prefix tree.
Growing sunflowers

Given a d-HS instance (H, k), create an empty hypergraph H'. Then, for each hyperedge e of H:

- if $\forall C \subseteq e: |\text{sunflower}[C]| \leq k$, then
 - add e to H'.
- for each $C \subseteq e$, if $\forall v \in e \setminus C: \text{used}[C][v] = \text{false}$, then
 - add e to $\text{sunflower}[C]$.
 - for each $v \in e \setminus C$, set $\text{used}[C][v] \leftarrow \text{true}$.

$\text{sunflower}[C]$ and $\text{used}[C]$ can be accessed in $O(d) \subseteq O(1)$ time using a prefix tree.

Running time: $O(d|V| + 2^d d|E|)$.
Memory: $\Theta(|V| \cdot |E|)$.
Growing sunflowers

Given a d-HS instance (H, k), create an empty hypergraph H'. Then, for each hyperedge e of H:

- if $\forall C \subseteq e: |\text{sunflower}[C]| \leq k$, then
 - add e to H'.
 - for each $C \subseteq e$, if $\forall v \in e \setminus C: \text{used}[C][v] = \text{false}$, then
 - add e to $\text{sunflower}[C]$
 - for each $v \in e \setminus C$, set $\text{used}[C][v] \leftarrow \text{true}$

\text{sunflower}[C] \text{ and } \text{used}[C] \text{ can be accessed in } O(d) \subseteq O(1) \text{ time using a prefix tree.}

Running time: $O(d|V| + 2^d d|E|)$.
Memory: $\Theta(|V| \cdot |E|)$.

Prefix tree has to be initialized \textbf{incompletely} and \textbf{carefully}.
Further results on d-Hitting Set

Experimental results

- Instances from a problem arising in radio frequency allocation.
 [Sorge, Moser, Niedermeier, and Weller, Conference on Integer Programming and Combinatorial Optimization 2012]
 [Babcock, Bell Systems Technical Journal 32, 1953]
Further results on d-Hitting Set

Experimental results

- Instances from a problem arising in radio frequency allocation.
 [Sorge, Moser, Niedermeier, and Weller, Conference on Integer Programming and Combinatorial Optimization 2012]
 [Babcock, Bell Systems Technical Journal 32, 1953]
- 4-HS with $20 \cdot 10^6$ hyperedges processed in about five minutes.
Further results on d-Hitting Set

Experimental results

- Instances from a problem arising in radio frequency allocation.
 [Sorge, Moser, Niedermeier, and Weller, Conference on Integer Programming and Combinatorial Optimization 2012]
 [Babcock, Bell Systems Technical Journal 32, 1953]
- 4-HS with $20 \cdot 10^6$ hyperedges processed in about five minutes.
- Prefix trees for `sunflower[]` and `used[]` are faster, but balanced trees have linear memory usage.
Further results on d-Hitting Set

Experimental results

- Instances from a problem arising in radio frequency allocation.
 - [Sorge, Moser, Niedermeier, and Weller, Conference on Integer Programming and Combinatorial Optimization 2012]
 - [Babcock, Bell Systems Technical Journal 32, 1953]
- 4-HS with $20 \cdot 10^6$ hyperedges processed in about five minutes.
- Prefix trees for `sunflower[]` and `used[]` are faster, but balanced trees have linear memory usage.

Speed up kernels of Abu-Khzam and Moser:

- $O(k^{d-1})$-vertex problem kernel in $O(|V| + |E| + k^{1.5d})$ time.
 - [Moser, Dissertation, Friedrich-Schiller-Universität Jena, 2010]
Task: Remove at most $k = 3$ arcs from a directed acyclic graph (dag) so that every vertex reaches exactly one sink.
Dag Partitioning

Task: Remove at most $k = 3$ arcs from a directed acyclic graph (dag) so that every vertex reaches exactly one sink.

Algorithmic results:

- $O(2^k \cdot (n + m))$ time algorithm.
- Linear-time data reduction.

Strategy:

First solve problem for all out-neighbors of v, then for v.

René van Bevern
Task: Remove at most $k = 3$ arcs from a directed acyclic graph (dag) so that every vertex reaches exactly one sink.

Algorithmic results:
- $O(2^k \cdot (n + m))$ time algorithm.
- Linear-time data reduction.
Dag Partitioning

Task: Remove at most $k = 3$ arcs from a directed acyclic graph (dag) so that every vertex reaches exactly one sink.

Algorithmic results:
- $O(2^k \cdot (n + m))$ time algorithm.
- Linear-time data reduction.

Strategy: First solve problem for all out-neighbors of v, then for v.
Experimental results for Dag Partitioning

$O(2^k \cdot (n + m))$ time algorithm on simulated citation networks:

- Instances with $m \geq 10^7$ arcs and $k \leq 190$ arc deletions solvable in five minutes.
- Without the linear-time data reduction, no instance solvable in less than an hour.
- Comparison with known heuristic. [Leskovec, Backstrom, and Kleinberg, ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2009]
 - Heuristic more than a factor of 2.5 off the optimum.
 - Algorithm only runs fast where the heuristic gives optimal solutions.
Experimental results for Dag Partitioning

$O(2^k \cdot (n + m))$ time algorithm on simulated citation networks:
- Instances with $m \geq 10^7$ arcs and $k \leq 190$ arc deletions solvable in five minutes.
- Without the linear-time data reduction, no instance solvable in less than an hour.

Comparison with known heuristic. [Leskovec, Backstrom, and Kleinberg, ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2009]
- Heuristic more than a factor of 2.5 off the optimum.
- Algorithm only runs fast where the heuristic gives optimal solutions.
Experimental results for Dag Partitioning

$O(2^k \cdot (n + m))$ time algorithm on simulated citation networks:

- Instances with $m \geq 10^7$ arcs and $k \leq 190$ arc deletions solvable in five minutes.

- Without the linear-time data reduction, no instance solvable in less than an hour.
Experimental results for Dag Partitioning

\(O(2^k \cdot (n + m))\) time algorithm on simulated citation networks:

- Instances with \(m \geq 10^7\) arcs and \(k \leq 190\) arc deletions solvable in five minutes.
- Without the linear-time data reduction, no instance solvable in less than an hour.

Comparison with known heuristic.
[Leskovec, Backstrom, and Kleinberg, ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2009]

- Heuristic more than a factor of 2.5 off the optimum.
- Algorithm only runs fast where the heuristic gives optimal solutions.
Task: Find at least \(k = 4 \) rectangles whose projections onto neither axis intersect.
2-Union Independent Set

Task: Find at least $k = 4$ rectangles whose projections onto neither axis intersect.
Task: Find at least \(k = 3 \) rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills one of \(\gamma \) strips.
Job Interval Selection

Task: Find at least $k = 3$ rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills one of γ strips.

Known: Solvable in $O(2^{\gamma \gamma} \cdot n)$ time.

[Halldórsson and Karlsson, International Workshop on Graph-Theoretic Concepts in Computer Science 2006]
Job Interval Selection

Task: Find at least $k = 3$ rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills one of γ strips.

Known: Solvable in $O(2^{\gamma} \cdot n)$ time.

[Halldórsson and Karlsson, International Workshop on Graph-Theoretic Concepts in Computer Science 2006]

New: $O(5.5^k k \cdot n)$ time, where $k \leq \gamma$.
Job Interval Selection

Task: Find at least \(k = 3 \) rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills one of \(\gamma \) strips.

Known: Solvable in \(O(2^\gamma \gamma \cdot n) \) time.

[Halldórsson and Karlsson, International Workshop on Graph-Theoretic Concepts in Computer Science 2006]

New: \(O(5.5^k k \cdot n) \) time, where \(k \leq \gamma \).

Trick: Randomly move strip \(i \in \{1, \ldots, \gamma\} \) to strip \(j \in \{1, \ldots, k\} \).

- Then use \(O(2^\gamma \gamma \cdot n)\)-time algorithm with \(\gamma = k \).
Job Interval Selection

Task: Find at least \(k = 3 \) rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills one of \(\gamma \) strips.

Known: Solvable in \(O(2^\gamma \cdot n) \) time.

[Halldórsson and Karlsson, International Workshop on Graph-Theoretic Concepts in Computer Science 2006]

New: \(O(5.5^k k \cdot n) \) time, where \(k \leq \gamma \).

Trick: Randomly move strip \(i \in \{1, \ldots, \gamma\} \) to strip \(j \in \{1, \ldots, k\} \).

- Then use \(O(2^\gamma \cdot n) \)-time algorithm with \(\gamma = k \).
- Repeat \(O(e^k \cdot |\ln \varepsilon|) \) times for error probability \(\leq \varepsilon \).
Compact 2-Union Independent Set

Task: Find at least k rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills any subset of γ strips (we say that one axis is γ-compact).

New: $O(2^{\gamma^2} \cdot n)$ time algorithm.

▶ Generalization of Halldórsson and Karlsson’s algorithm.

▶ γ-compact representation for minimum γ in linear time.

Experiments on random rectangles:

▶ $n \leq 0.6 \cdot 10^6$ rectangles in $\gamma \leq 15$ strips solved in five minutes.
Compact 2-Union Independent Set

Task: Find at least k rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills any subset of γ strips (we say that one axis is γ-compact).

New: $O(2^{2^\gamma} \cdot n)$ time algorithm.
 - Generalization of Halldórsson and Karlsson’s algorithm.
Compact 2-Union Independent Set

Task: Find at least \(k \) rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills any subset of \(\gamma \) strips (we say that one axis is \(\gamma \)-compact).

New: \(O(2^\gamma \gamma \cdot n) \) time algorithm.

- Generalization of Halldórsson and Karlsson’s algorithm.
- \(\gamma \)-compact representation for minimum \(\gamma \) in linear time.
Compact 2-Union Independent Set

Task: Find at least k rectangles not intersecting on any axis.

Special case: Each rectangle vertically fills any subset of γ strips (we say that one axis is γ-**compact**).

New: $O(2^{\gamma} \cdot n)$ time algorithm.

- Generalization of Halldórsson and Karlsson’s algorithm.
- γ-**compact** representation for minimum γ in linear time.

Experiments on random rectangles:

- $n \leq 0.6 \cdot 10^6$ rectangles in $\gamma \leq 15$ strips solved in five minutes.
Conclusion

Aspects brought into fixed-parameter algorithms:

- Returning to the initial goal—efficient algorithms.
- Data structures are suddenly important.
Conclusion

Aspects brought into fixed-parameter algorithms:
- Returning to the initial goal—efficient algorithms.
- Data structures are suddenly important.

Insights from experiments:
- Simpler algorithms.
- Provable speed-ups.
- We are on the right way.
Conclusion

Aspects brought into fixed-parameter algorithms:
- Returning to the initial goal—efficient algorithms.
- Data structures are suddenly important.

Insights from experiments:
- Simpler algorithms.
- Provable speed-ups.
- We are on the right way.

Challenges:
- Parameter race for fixed-parameter linear-time algorithms.
Conclusion

Aspects brought into fixed-parameter algorithms:
- Returning to the initial goal—efficient algorithms.
- Data structures are suddenly important.

Insights from experiments:
- Simpler algorithms.
- Provable speed-ups.
- We are on the right way.

Challenges:
- Parameter race for fixed-parameter linear-time algorithms.
- Linear-time transformations to problems with well-tuned solvers (SAT, ILP)
Conclusion

Aspects brought into fixed-parameter algorithms:

- Returning to the initial goal—efficient algorithms.
- Data structures are suddenly important.

Insights from experiments:

- Simpler algorithms.
- Provable speed-ups.
- We are on the right way.

Challenges:

- Parameter race for fixed-parameter linear-time algorithms.
- Linear-time transformations to problems with well-tuned solvers (SAT, ILP) + linear-time data reduction.
Conclusion

Aspects brought into fixed-parameter algorithms:

- Returning to the initial goal—efficient algorithms.
- Data structures are suddenly important.

Insights from experiments:

- Simpler algorithms.
- Provable speed-ups.
- We are on the right way.

Challenges:

- Parameter race for fixed-parameter linear-time algorithms.
- Linear-time transformations to problems with well-tuned solvers (SAT, ILP) + linear-time data reduction.
- Lower bounds.