
Measuring Indifference:
Unit Interval Vertex Deletion

René van Bevern Christian Komusiewicz Hannes Moser
Rolf Niedermeier

Institut für Informatik
Friedrich-Schiller-Universität Jena, Germany

36th International Workshop on Graph-Theoretic Concepts in
Computer Science, Zarós, Crete, Greece

1/17

How many sugar cubes would you like in your coffee?

The goal is placing the following alternatives in a ranking:

What is the resulting ranking if we are indifferent between i sugar
cubes and i+ 1 sugar cubes?

Ranking i and i+ 1 sugar cubes equally would imply indifference
between one and four sugar cubes.
 Rank similar alternatives closely instead of equally.

2/17

Measuring Indifference

Approach described by Luce (1956, Econometrica), see also
Aleskerov et al. (2007):

Given: Set V of objects and a set E containing {v, w} iff a
person is indifferent between v ∈ V and w ∈ V.

Task: Find indifference measure f : V→ R with
|f(v)− f(w)| ≤ δ ⇐⇒ {v, w} ∈ E, where δ ∈ R.

Related to seriation in, e. g., archaeology (Roberts, 1971) and
utility maximization in economics (Aleskerov et al., 2007).

Roberts (1969, Proof Techniques in Graph Theory): indifference
measure f exists if and only if G := (V, E) is a unit interval graph.

3/17

Unit Interval Vertex Deletion

If indifference measure does not exist: remove some outliers so
that the remaining objects allow for indifference measure.

Unit Interval Vertex Deletion.

Input: A graph G= (V, E) and a natural number k.

Question: Is G− S a unit interval graph for some vertex
set S⊆ V with |S| ≤ k?

We call S a unit interval vertex deletion set.

4/17

Unit Interval Graphs

Wegner (1967, PhD thesis): unit interval graphs are precisely the
graphs not containing the following induced subgraphs:

claw net tent hole

Holes are induced cycles of length greater than three.

5/17

Challenge

Marx (2010, Algorithmica) presented a fixed-parameter algorithm
for the related problem:

Chordal Vertex Deletion.

Input: A graph G= (V, E) and a natural number k.

Question: Is G− S hole-free for some vertex set S⊆ V with
|S| ≤ k?

É extensible to solve Unit Interval Vertex Deletion
É in worst case, solves problem on tree decompositions of

width Ω(k4): running time like 2Ω(k
4) · poly(n)

6/17

Main Result

Theorem. Unit Interval Vertex Deletion is solvable in
O((14k+ 14)k+1 · kn6) time.

Here,
É k is the number of allowed vertex deletions and
É n is the number of vertices in the input graph.

7/17

Reduction to Simpler Problem I

To obtain structural information about the input graph, we

É destroy induced claws, nets, tents, C4s and C5s in the input
graph using a simple search tree algorithm and

É solve Unit Interval Vertex Deletion on the resulting almost
unit interval graphs, i. e. {claw, net, tent, C4, C5}-free graphs.

Proposition. Unit Interval Vertex Deletion is NP-complete on
{claw, net, tent}-free graphs.

8/17

Reduction to Simpler Problem II

Using iterative compression due to Reed et al. (2004, Operations
Research Letters), we finally arrive at

Disjoint Unit Interval Vertex Deletion.

Input: An almost unit interval graph G= (V, E) and a unit
interval vertex deletion set X for G.

Output: A unit interval vertex deletion set S with |S|< |X|
and S∩ X = ; or “no” if no such set exists.

Theorem. Disjoint Unit Interval Vertex Deletion is solvable in
O((14|X| − 1)|X|−1 · |X|n5) time.

9/17

Properties of Unit Interval Graphs I

One can find in linear time a bicompatible elimination order of the
vertices of a unit interval graph (Panda and Das, 2003, IPL).

In a bicompatible elimination order, vertices of maximal cliques
appear consecutively.

Example. The following order from left to right is not a
bicompatible elimination order.

v1 v2 v3 v4 v5

10/17

Properties of Unit Interval Graphs II

One can find in linear time a bicompatible elimination order of the
vertices of a unit interval graph (Panda and Das, 2003, IPL).

Vertices of induced paths appear in the same (or inverse) order as
in a bicompatible elimination order.

Example. The following order from left to right is not a
bicompatible elimination order.

v1 v2 v3 v4 v5

11/17

Structure of Disjoint UIVD Instance

We structure a Disjoint Unit Interval Vertex Deletion instance
using a classification of the maximal cliques of G− X:

tube inner vert’sjunction

G− X

X

É Here, G− X is a unit interval graph.
É If the almost unit interval graph G is not a unit interval graph,

then it contains a hole of length greater than six.

12/17

Basic Idea

tube inner vert’sjunction

G− X

X

It remains to destroy holes of length greater than six. Idea:
É bound the number of vertices of a hole in junctions,
É bound the number of tubes visited by a hole, finally
É show how to optimally destroy tubes in polynomial time.

Then try all possibilities of destroying a hole
É by deleting a vertex of the hole in a junction or
É by destroying a tube visited by the hole.

13/17

Properties of Almost Unit Interval Graphs

Derived from Fouquet (1993, Journal of Combinatorial Theory
Series B): in an almost unit interval graph containing holes, the
neighborhood of each vertex can be covered by two cliques:

v

Each clique contains at most two vertices of a hole.

14/17

Bounding Number of Vertices in Junctions

The neighborhood of the unit interval vertex deletion set X can be
covered by 2|X| (not necessarily maximal) cliques. Let S(C) be the
set of vertices of all maximal cliques intersecting one such clique C:

cmin cmax

S(C)

Smin(C) Smax(C)

C

Observe: S(C) is the union of three maximal cliques and therefore
contains at most six vertices of a hole.
 At most 12|X| vertices of a hole are in junctions.

15/17

Algorithm

Input: An almost unit interval graph G and unit interval
vertex deletion set X for G.

Output: A unit interval vertex deletion set smaller than X and
disjoint from X.

1. Compute bicompatible elimination order for G− X.

2. Collect tubes in G− X.
3. Repeatedly find hole H in G, recursively try all possibilities of

3.1 deleting one of 12|X| vertices of H in junctions and
3.2 destroying one of 2|X| − 1 tubes visited by H.

There are 14|X| − 1 possibilities to destroy a hole. At most |X| − 1
vertices may be deleted. Running time: O((14|X| − 1)|X|−1 · |X|n5).

16/17

Conclusion and Outlook

High polynomial running time part is due to finding nets and
tents: room for improvements.

Experiments may show better performance than proven upper
bound: some branching rules may delete large vertex cuts in tubes.

The algorithm is not applicable to Interval Vertex Deletion:
interval graphs do not allow for bicompatible elimination orders.

The existence of a polynomial-size problem kernel is open.

17/17

